首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammatory bowel disease (IBD) arises from a dysregulated mucosal immune response to luminal bacteria. Toll-like receptor (TLR)4 recognizes LPS and transduces a proinflammatory signal through the adapter molecule myeloid differentiation marker 88 (MyD88). We hypothesized that TLR4 participates in the innate immune response to luminal bacteria and the development of colitis. TLR4-/- and MyD88-/- mice and littermate controls were given 2.5% dextran sodium sulfate (DSS) for 5 or 7 days followed by a 7-day recovery. Colitis was assessed by weight loss, rectal bleeding, and histopathology. Immunostaining was performed for macrophage markers, chemokine expression, and cell proliferation markers. DSS treatment of TLR4-/- mice was associated with striking reduction in acute inflammatory cells compared with wild-type mice despite similar degrees of epithelial injury. TLR4-/- mice experienced earlier and more severe bleeding than control mice. Similar results were seen with MyD88-/- mice, suggesting that this is the dominant downstream pathway. Mesenteric lymph nodes from TLR4-/- and MyD88-/- mice more frequently grew gram-negative bacteria. Altered neutrophil recruitment was due to diminished macrophage inflammatory protein-2 expression by lamina propria macrophages in TLR4-/- and MyD88-/- mice. The similarity in crypt epithelial damage between TLR4-/- or MyD88-/- and wild-type mice was seen despite decreased epithelial proliferation in knockout mice. TLR4 through the adapter molecule MyD88 is important in intestinal response to injury and in limiting bacterial translocation. Despite the diversity of luminal bacteria, other TLRs do not substitute for the role of TLR4 in this acute colitis model. A defective innate immune response may result in diminished bacterial clearance and ultimately dysregulated response to normal flora.  相似文献   

2.
Myeloid differentiation factor (MyD)88, an adaptor protein shared by the Toll-interleukin 1 receptor superfamily, plays a critical role in host defence during many systemic bacterial infections by inducing protective inflammatory responses that limit bacterial growth. However, the role of innate responses during gastrointestinal (GI) infections is less clear, in part because the GI tract is tolerant to commensal antigens. The current study investigated the role of MyD88 following infection by the murine bacterial pathogen, Citrobacter rodentium . MyD88-deficient mice suffered a lethal colitis coincident with colonic mucosal ulcerations and bleeding. Their susceptibility was associated with an overwhelming bacterial burden and selectively impaired immune responses in colonic tissues, which included delayed inflammatory cell recruitment, reduced iNOS and abrogated production of TNF-α and IL-6 from MyD88-deficient macrophages and colons cultured ex vivo . Immunostaining for Ki67 and BrDU revealed that MyD88 signalling mediated epithelial hyper-proliferation in response to C. rodentium infection. Thus, MyD88-deficient mice could not promote epithelial cell turnover and repair, leading to deep bacterial invasion of colonic crypts, intestinal barrier dysfunction and, ultimately, widespread mucosal ulcerations. In conclusion, MyD88 signalling within the GI tract plays a critical role in mediating host defence against an enteric bacterial pathogen, by controlling bacterial numbers and promoting intestinal epithelial homeostasis.  相似文献   

3.
Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.  相似文献   

4.
Infections by attaching and effacing (A/E) bacterial pathogens, such as Escherichia coli O157:H7, pose a serious threat to public health. Using a mouse A/E pathogen, Citrobacter rodentium, we show that interleukin-22 (IL-22) has a crucial role in the early phase of host defense against C. rodentium. Infection of IL-22 knockout mice results in increased intestinal epithelial damage, systemic bacterial burden and mortality. We also find that IL-23 is required for the early induction of IL-22 during C. rodentium infection, and adaptive immunity is not essential for the protective role of IL-22 in this model. Instead, IL-22 is required for the direct induction of the Reg family of antimicrobial proteins, including RegIIIbeta and RegIIIgamma, in colonic epithelial cells. Exogenous mouse or human RegIIIgamma substantially improves survival of IL-22 knockout mice after C. rodentium infection. Together, our data identify a new innate immune function for IL-22 in regulating early defense mechanisms against A/E bacterial pathogens.  相似文献   

5.
Bacterial pathogens are recognized by the innate immune system through pattern recognition receptors, such as Toll-like receptors (TLRs). Engagement of TLRs triggers signaling cascades that launch innate immune responses. Activation of MAPKs and NF-kappaB, elements of the major signaling pathways induced by TLRs, depends in most cases on the adaptor molecule MyD88. In addition, Gram-negative or intracellular bacteria elicit MyD88-independent signaling that results in production of type I interferon (IFN). Here we show that in mouse macrophages, the activation of MyD88-dependent signaling by the extracellular Gram-positive human pathogen group A streptococcus (GAS; Streptococcus pyogenes) does not require TLR2, a receptor implicated in sensing of Gram-positive bacteria, or TLR4 and TLR9. Redundant engagement of either of these TLR molecules was excluded by using TLR2/4/9 triple-deficient macrophages. We further demonstrate that infection of macrophages by GAS causes IRF3 (interferon-regulatory factor 3)-dependent, MyD88-independent production of IFN. Surprisingly, IFN is induced also by GAS lacking slo and sagA, the genes encoding cytolysins that were shown to be required for IFN production in response to other Gram-positive bacteria. Our data indicate that (i) GAS is recognized by a MyD88-dependent receptor other than any of those typically used by bacteria, and (ii) GAS as well as GAS mutants lacking cytolysin genes induce type I IFN production by similar mechanisms as bacteria requiring cytoplasmic escape and the function of cytolysins.  相似文献   

6.
In vitro studies have indicated the importance of Toll-like receptor (TLR) signaling in response to the fungal pathogens Candida albicans and Aspergillus fumigatus. However, the functional consequences of the complex interplay between fungal morphogenesis and TLR signaling in vivo remain largely undefined. In this study we evaluate the impact of the IL-1R/TLR/myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway on the innate and adaptive Th immunities to C. albicans and A. fumigatus in vivo. It was found that 1) the MyD88-dependent pathway is required for resistance to both fungi; 2) the involvement of the MyD88 adapter may occur through signaling by distinct members of the IL-1R/TLR superfamily, including IL-1R, TLR2, TLR4, and TLR9, with the proportional role of the individual receptors varying depending on fungal species, fungal morphotypes, and route of infection; 3) individual TLRs and IL-1R activate specialized antifungal effector functions on neutrophils, which correlates with susceptibility to infection; and 4) MyD88-dependent signaling on dendritic cells is crucial for priming antifungal Th1 responses. Thus, the finding that the innate and adaptive immunities to C. albicans and A. fumigatus require the coordinated action of distinct members of the IL-1R/TLR superfamily acting through MyD88 makes TLR manipulation amenable to the induction of host resistance to fungi.  相似文献   

7.
Toll-like receptors (TLRs) are important for the activation of innate immune cells upon encounter of microbial pathogens. The present study investigated the potential roles of TLR2, TLR4, and the signaling protein myeloid differentiation factor 88 (MyD88) in polymicrobial septic peritonitis. Whereas both TLR2 and TLR4 were dispensable for host defense against septic peritonitis, MyD88-deficient mice were protected in this infection model. Recruitment of neutrophils to the septic focus and bacterial clearance were normal in MyD88-deficient mice. In contrast, the systemic inflammatory response was strongly attenuated in the absence of MyD88. Surprisingly, MyD88 deficiency did not alter cytokine and chemokine production in spleen, but markedly reduced the inflammatory response in liver and lung. Production of monocyte chemoattractant protein-1 and macrophage-inflammatory protein-1alpha was entirely independent of MyD88. These results imply a central role of MyD88 for the systemic immune pathology of polymicrobial sepsis and show that cytokine production in spleen and induction of certain chemokines are MyD88 independent.  相似文献   

8.
Inflammatory bowel diseases and infectious gastroenteritis likely occur when the integrity of intestinal barriers is disrupted allowing luminal bacterial products to cross into the intestinal mucosa, stimulating immune cells and triggering inflammation. While specific Toll-like receptors (TLR) are involved in the generation of inflammatory responses against enteric bacteria, their contributions to the maintenance of intestinal mucosal integrity are less clear. These studies investigated the role of TLR2 in a model of murine colitis induced by the bacterial pathogen Citrobacter rodentium . C. rodentium supernatants specifically activated TLR2 in vitro while infected TLR2–/– mice suffered a lethal colitis coincident with colonic mucosal ulcerations, bleeding and increased cell death but not increased pathogen burden. TLR2–/– mice suffered impaired epithelial barrier function mediated via zonula occludens (ZO)-1 in naïve mice and claudin-3 in infected mice, suggesting this could underlie their susceptibility. TLR2 deficiency was also associated with impaired production of IL-6 by bone marrow-derived macrophages and infected colons cultured ex vivo . As IL-6 has antiapoptotic and epithelial repair capabilities, its reduced expression could contribute to the impaired mucosal integrity. These studies report for the first time that TLR2 plays a critical role in maintaining intestinal mucosal integrity during infection by a bacterial pathogen.  相似文献   

9.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Toll-like receptors (TLRs) recognize Brucella spp. and bacterial components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella infection. TLR2, TLR4 and TLR9 have been implicated in host interactions with Brucella; however, TLR9 has the most prominent role. Further, the relationship between specific Brucella molecules and various signal transduction pathways needs to be better understood. MyD88-dependent and TRIF-independent signaling pathways are involved in Brucella activation of innate immune cells through TLRs. We have recently reported the critical role of MyD88 molecule in dendritic cell maturation and interleukin-12 production during B. abortus infection. This article discusses recent studies on TLR signaling and also highlights the contribution of NOD and type I IFN receptors during Brucella infection. The better understanding of the role by such innate immune receptors in bacterial infection is critical in host-pathogen interactions.  相似文献   

10.
Chlamydia trachomatis is an obligate intracellular gram-negative pathogen and the etiologic agent of significant ocular and genital tract diseases. Chlamydiae primarily infect epithelial cells, and the inflammatory response of these cells to the infection directs both the innate and adaptive immune response. This study focused on determining the cellular immune receptors involved in the early events following infection with the L2 serovar of C. trachomatis.We found that dominant negative MyD88 inhibited interleukin-8 (IL-8) secretion during a productive infection with chlamydia. Furthermore, expression of Toll-like receptor (TLR)-2 was required for IL-8 secretion from infected cells, whereas the effect of TLR4/MD-2 expression was minimal. Cell activation was dependent on infection with live, replicating bacteria, because infection with UV-irradiated bacteria and treatment of infected cells with chloramphenicol, but not ampicillin, abrogated the induction of IL-8 secretion. Finally, we show that both TLR2 and MyD88 co-localize with the intracellular chlamydial inclusion, suggesting that TLR2 is actively engaged in signaling from this intracellular location. These data support the role of TLR2 in the host response to infection with C. trachomatis. Our data further demonstrate that TLR2 and the adaptor MyD88 are specifically recruited to the bacterial or inclusion membrane during a productive infection with chlamydia and provide the first evidence that intracellular TLR2 is responsible for signal transduction during infection with an intracellular bacterium.  相似文献   

11.
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli are non-invasive attaching/effacing (A/E) bacterial pathogens that infect their host's intestinal epithelium, causing severe diarrhoeal disease. These bacteria utilize a type III secretion apparatus to deliver effector molecules into host cells, subverting cellular function. Mitochondrial associated protein (Map) is a multifunctional effector protein that targets host cell mitochondria and contributes to infection-induced epithelial barrier dysfunction in vitro. Unfortunately, the relevance of these actions to the pathogenesis of EPEC-induced disease is uncertain. Using Citrobacter rodentium, a mouse-adapted A/E bacterium, we found that Map colocalized with host cell mitochondria, and that in vivo infection led to a disruption of mitochondrial morphology in infected colonocytes as assessed by electron microscopy. Histochemical staining for the mitochondrial enzyme succinate dehydrogenase also revealed a significant loss of mitochondrial respiratory function in the infected intestinal epithelium; however, both pathologies were attenuated in mice infected with a Deltamap strain. C. rodentium Map was also implicated in the disruption of epithelial barrier function both in vitro and in vivo. These studies thus advance our understanding of how A/E pathogens subvert host cell functions and cause disease, demonstrating that Map contributes to the functional disruption of the intestinal epithelium during enteric infection by C. rodentium.  相似文献   

12.
The incidence of infections with Enterococcus faecium is increasing worldwide. TLRs have been implicated in the recognition of pathogens and the initiation of an adequate innate immune response. We here sought to determine the roles of MyD88, the common adaptor protein involved in TLR signaling, TLR2, TLR4, and CD14 in host defense against E. faecium peritonitis. MyD88 knockout (KO) mice demonstrated an impaired early response to E. faecium peritonitis, as reflected by higher bacterial loads in peritoneal fluid and liver accompanied by a markedly attenuated neutrophil influx into the abdominal cavity. In vitro, not only MyD88 KO macrophages but also TLR2 KO and CD14 KO macrophages displayed a reduced responsiveness to E. faecium. In accordance, transfection of TLR2 rendered human embryonic kidney 293 cells responsive to E. faecium, which was enhanced by cotransfection of CD14. TLR2 KO mice showed higher bacterial loads in peritoneal fluid after in vivo infection with E. faecium and a diminished influx of neutrophils, whereas CD14 KO mice had an unaltered host response. E. faecium phagocytosis and killing were not affected by MyD88, TLR2, or CD14 deficiency. TLR4 did not play a role in the immune response to E. faecium in vitro or in vivo. These data suggest that MyD88 contributes to the effective clearance of E. faecium during peritonitis at least in part via TLR2 and by facilitating neutrophil recruitment to the site of the infection.  相似文献   

13.
Recent studies have demonstrated the importance of TLR signaling in intestinal homeostasis. Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. In this study, we sought to test the hypothesis that gliadin initiates this response by stimulating the innate immune response to increase intestinal permeability and by up-regulating macrophage proinflammatory gene expression and cytokine production. To this end, intestinal permeability and the release of zonulin (an endogenous mediator of gut permeability) in vitro, as well as proinflammatory gene expression and cytokine release by primary murine macrophage cultures, were measured. Gliadin and its peptide derivatives, 33-mer and p31-43, were found to be potent inducers of both a zonulin-dependent increase in intestinal permeability and macrophage proinflammatory gene expression and cytokine secretion. Gliadin-induced zonulin release, increased intestinal permeability, and cytokine production were dependent on myeloid differentiation factor 88 (MyD88), a key adapter molecule in the TLR/IL-1R signaling pathways, but were neither TLR2- nor TLR4-dependent. Our data support the following model for the innate immune response to gliadin in the initiation of CD. Gliadin interaction with the intestinal epithelium increases intestinal permeability through the MyD88-dependent release of zonulin that, in turn, enables paracellular translocation of gliadin and its subsequent interaction with macrophages within the intestinal submucosa. There, the interaction of gliadin with macrophages elicits a MyD88-dependent proinflammatory cytokine milieu that facilitates the interaction of T cells with APCs, leading ultimately to the Ag-specific adaptive immune response seen in patients with CD.  相似文献   

14.
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.  相似文献   

15.
The ehrlichiae are small Gram-negative obligate intracellular bacteria in the family Anaplasmataceae. Ehrlichial infection in an accidental host may result in fatal diseases such as human monocytotropic ehrlichiosis, an emerging, tick-borne disease. Although the role of adaptive immune responses in the protection against ehrlichiosis has been well studied, the mechanism by which the innate immune system is activated is not fully understood. Using Ehrlichia muris as a model organism, we show here that MyD88-dependent signaling pathways play a pivotal role in the host defense against ehrlichial infection. Upon E. muris infection, MyD88-deficient mice had significantly impaired clearance of E. muris, as well as decreased inflammation, characterized by reduced splenomegaly and recruitment of macrophages and neutrophils. Furthermore, MyD88-deficient mice produced markedly lower levels of IL-12, which correlated well with an impaired Th1 immune response. In vitro, dendritic cells, but not macrophages, efficiently produced IL-12 upon E. muris infection through a MyD88-dependent mechanism. Therefore, MyD88-dependent signaling is required for controlling ehrlichial infection by playing an essential role in the immediate activation of the innate immune system and inflammatory cytokine production, as well as in the activation of the adaptive immune system at a later stage by providing for optimal Th1 immune responses.  相似文献   

16.
Although intestinal flora are crucial in maintaining immune homeostasis of the intestine, the role of intestinal flora in immune responses at other mucosal surfaces remains less clear. Here, we show that intestinal flora composition critically regulates the toll-like receptor 7 (TLR7) signaling pathway following respiratory influenza virus infection. TLR7 ligands rescued the immune impairment in antibiotic-treated mice. Intact microbiota provided signals leading to the expression of mRNA for TLR7, MyD88, IRAK4, TRAF6, and NF-κB at steady state. Significant changes in the composition of culturable commensal bacteria reduced the expression levels of components of the TLR7 signaling pathway. Our results reveal the importance of intestinal flora in regulating immunity in the respiratory mucosa through the upregulation of the TLR7 signaling pathway for the proper activation of inflammasomes.  相似文献   

17.
Bacterial flagellin, the primary structural component of flagella, is a dominant target of humoral immunity upon infection by enteric pathogens and in Crohn's disease. To better understand how such responses may be regulated, we sought to define, in mice, basic mechanisms that regulate generation of flagellin-specific Igs. We observed that, in response to i.p. injection with flagellin, generation of flagellin-specific Ig required activation of innate immunity in that these responses were ablated in MyD88-deficient mice and that flagellin from Helicobacter pylori, which is known not to activate TLR5, also did not elicit Abs. Mice lacking alphabeta T cells (TCRbeta(null)) were completely deficient in their ability to make flagellin Abs in various contexts indicating that, in contrast to common belief, generation of flagellin-specific Ig is absolutely T cell dependent. In contrast to Ab responses to whole flagella (H serotyping), responses to flagellin monomers displayed only moderate serospecificity. Whereas neither oral nor rectal administration of flagellin elicited a strong serum Ab response, induction of colitis with dextran sodium sulfate resulted in a MyD88-dependent serum Ab response to endogenous flagellin, suggesting that, in an inflammatory milieu, TLR signaling promotes acquisition of Abs to intestinal flagellin. Thus, acquisition of a humoral immune response to flagellin requires activation of innate immunity, is T cell dependent, and can originate from flagellin in the intestinal tract in inflammatory conditions in the intestine.  相似文献   

18.
The apoptotic signaling pathway activated by Toll-like receptor-2   总被引:31,自引:0,他引:31       下载免费PDF全文
The innate immune system uses Toll family receptors to signal for the presence of microbes and initiate host defense. Bacterial lipoproteins (BLPs), which are expressed by all bacteria, are potent activators of Toll-like receptor-2 (TLR2). Here we show that the adaptor molecule, myeloid differentiation factor 88 (MyD88), mediates both apoptosis and nuclear factor-kappaB (NF-kappaB) activation by BLP-stimulated TLR2. Inhibition of the NF-kappaB pathway downstream of MyD88 potentiates apoptosis, indicating that these two pathways bifurcate at the level of MyD88. TLR2 signals for apoptosis through MyD88 via a pathway involving Fas-associated death domain protein (FADD) and caspase 8. Moreover, MyD88 binds FADD and is sufficient to induce apoptosis. These data indicate that TLR2 is a novel 'death receptor' that engages the apoptotic machinery without a conventional cytoplasmic death domain. Through TLR2, BLP induces the synthesis of the precursor of the pro-inflammatory cytokine interleukin-1beta (IL-1beta). Interestingly, BLP also activates caspase 1 through TLR2, resulting in proteolysis and secretion of mature IL-1beta. These results indicate that caspase activation is an innate immune response to microbial pathogens, culminating in apoptosis and cytokine production.  相似文献   

19.
The opportunistic human pathogen Pseudomonas aeruginosa causes rapidly progressive and tissue-destructive infections, such as hospital-acquired and ventilator-associated pneumonias. Innate immune responses are critical in controlling P. aeruginosa in the mammalian lung, as demonstrated by the increased susceptibility of MyD88(-/-) mice to this pathogen. Experiments conducted using bone marrow chimeric mice demonstrated that radio-resistant cells participated in initiating MyD88-dependent innate immune responses to P. aeruginosa. In this study we used a novel transgenic mouse model to demonstrate that MyD88 expression by epithelial cells is sufficient to generate a rapid and protective innate immune response following intranasal infection with P. aeruginosa. MyD88 functions as an adaptor for many TLRs. However, mice in which multiple TLR pathways (e.g., TLR2/TLR4/TLR5) are blocked are not as compromised in their response to P. aeruginosa as mice lacking MyD88. We demonstrate that IL-1R signaling is an essential element of MyD88-dependent epithelial cell responses to P. aeruginosa infection.  相似文献   

20.
Our previous study has found that aureusidin can inhibit inflammation by targeting myeloid differentiation 2 (MD2) protein. Structural optimization of aureusidin gave rise to a derivative named CNQX. LPS was used to induce inflammation in intestinal macrophages; flow cytometry, PI staining and Hoechst 33342 staining were used to detect the apoptotic level of macrophages; enzyme-linked immunosorbent assay (ELISA) was utilized to detect the expression level of inflammatory factors (including IL-1β, IL-18 and TNF-α); immunofluorescence staining was used to investigate the expression of MD2; Western blot was employed to measure the protein level of TLR4, MD2, MyD88 and p-P65. As a result, CNQX with IC50 of 2.5 μM can significantly inhibit the inflammatory damage of macrophages, decrease apoptotic level, reduce the expression level of inflammatory factors and simultaneously decrease the expression level of TLR4, MD2, MyD88 as well as p-P65. Caco-2 cell line was used to simulate the intestinal mucosal barrier in vitro, LPS was employed to induce cell injury in Caco-2 (to up-regulate barrier permeability), and CNQX with IC50 of 2.5 μl was used for intervention. Flow cytometry was used to detect the apoptotic level of Caco-2 cells, trans-epithelial electric resistance (TEER) was measured, FITC-D was used to detect the permeability of the intestinal mucosa, and Western blot was used to detect the expression levels of tight junction proteins (including occludin, claudin-1, MyD88, TLR4 and MD2). As a result, CNQX decreased the apoptotic level of Caco-2 cells, increased TEER value, decreased the expression levels of MyD88, TLR4 and MD2, and increased the protein levels of tight junction proteins (including occludin and claudin-1). C57BL/6 wild-type mice were treated with drinking water containing Dextran sulphate sodium (DSS) to establish murine chronic colitis model. After CQNX intervention, we detected the bodyweight, DAI score and H&E tissue staining to evaluate the life status and pathological changes. Immunohistochemistry (IHC) staining was used to detect the expression of MD2 protein, tight junction protein (including occludin and claudin-1). Transmission electron microscopy and FITC-D were used to detect intestinal mucosal permeability. Western blot was used to detect the expression levels of tight junction proteins (including occludin, claudin-1, MyD88, TLR4 and MD2) in the intestinal mucosa tissue. Consequently, CNQX can inhibit the intestinal inflammatory response in mice with colitis, inhibit the mucosal barrier injury, increase the expression of tight junction proteins (including occludin and claudin-1) and decrease the expression levels of MyD88, TLR4 and MD2. Mechanistically, pull-down and immunoprecipitation assays showed that CNQX can inhibit the activation of TLR4/MD2-NF-κB by binding to MD2 protein. Collectively, in this study, we found that CNQX can suppress the activation of TLR4 signals by targeting MD2 protein, thereby inhibiting inflammation and mucosal barrier damage of chronic colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号