首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用鸭乙型肝炎病毒(DHBV)阳性的安徽庐江鸭血清感染DHBV阴性的北京雏鸭,扩增病毒,将提取的DHBV-DNA插入pUC18质粒,转化E.coli JM 105。酶切重组质粒及South-ern转膜杂交结果证实,质粒pLJ76的插入片段为DHBV全基因组。用EcoR Ⅰ等11种限制性内切酶对pLJ76进行酶谱分析,并与美国,西德的已知DHBV基因组比较。定向克隆该株病毒不同基因编码区片段,构建正负单链探针,将斑点杂交和单链电泳检出的M13阳性重组子与已知序列的DHBV基因组作比较,提示获得了该株病毒基因组的S、Pre-S、P和X/C等蛋白编码区的正、负单链克隆株。  相似文献   

2.
3.
Intermediates in the synthesis of Rous sarcoma virus DNA in vivo contain a short second strand of DNA (plus strong-stop DNA) synthesized by using the region near the 5' end of the first (minus) strand of DNA as the template. In this report, we show that the 3' end of plus strong-stop DNA is extended about 15 to 20 nucleotides beyond the 5' end of the minus-strand DNA template, probably copying a portion of the tRNATrp molecule that serves as primer for synthesis of the minus strand of DNA. The extra sequences present in plus strong-stop DNA may play a central role in the generation of the long terminal repeat present in mature forms of viral DNA.  相似文献   

4.
I-SceI is a homing endonuclease that specifically cleaves an 18-bp double-stranded DNA. I-SceI exhibits a strong preference for cleaving the bottom strand DNA. The published structure of I-SceI bound to an uncleaved DNA substrate provided a mechanism for bottom strand cleavage but not for top strand cleavage. To more fully elucidate the I-SceI catalytic mechanism, we determined the X-ray structures of I-SceI in complex with DNA substrates that are nicked in either the top or bottom strands. The structures resemble intermediates along the DNA cleavage reaction. In a structure containing a nick in the top strand, the spatial arrangement of metal ions is similar to that observed in the structure that contains uncleaved DNA, suggesting that cleavage of the bottom strand occurs by a common mechanism regardless of whether this strand is cleaved first or second. In the structure containing a nick in the bottom strand, a new metal binding site is present in the active site that cleaves the top strand. This new metal and a candidate nucleophilic water molecule are correctly positioned to cleave the top strand following bottom strand cleavage, providing a plausible mechanism for top strand cleavage.  相似文献   

5.
6.
Habig JW  Loeb DD 《Journal of virology》2003,77(23):12401-12411
Two template switches are necessary during plus-strand DNA synthesis of the relaxed circular (RC) form of the hepadnavirus genome. The 3' end of the minus-strand DNA makes important contributions to both of these template switches. It acts as the donor site for the first template switch, called primer translocation, and subsequently acts as the acceptor site for the second template switch, termed circularization. A small DNA hairpin has been shown to form near the 3' end of the minus-strand DNA overlapping the direct repeat 1 in avihepadnaviruses. Previously we showed that this hairpin is involved in discriminating between two mutually exclusive pathways for the initiation of plus-strand DNA synthesis. In its absence, the pathway leading to production of duplex linear DNA is favored, whereas primer translocation is favored in its presence, apparently through the inhibition of in situ priming. Circularization involves transfer of the nascent plus strand from the 5' end of the minus-strand DNA to the 3' end, where further elongation can lead to production of RC DNA. Using both genetic and biochemical approaches, we now have found that the small DNA hairpin in the duck hepatitis B virus (DHBV) makes a positive contribution to circularization. The contribution appears to be through its impact on the conformation of the acceptor site. We also identified a unique DHBV variant that can synthesize RC DNA well in the absence of the hairpin. The behavior of this variant could serve as a model for understanding the mammalian hepadnaviruses, in which an analogous hairpin does not appear to exist.  相似文献   

7.
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.  相似文献   

8.
Preparations of circular plasmid DNA in either supercoiled or nicked circular form often are contaminated with undesired linear DNA fragments arising from shearing/degradation of chromosomal DNA or linearization of plasmid DNA itself. We report a simple enzymatic method, using a combination of λ exonuclease and RecJf, for the selective removal of linear DNA from such mixtures. λ exonuclease digests one strand of linear duplex DNA in the 5′ to 3′ direction, whereas RecJf, a single-strand-specific exonuclease, digests the remaining complementary single strand into mononucleotides. This combination of exonucleases can remove linear DNA from a mixture of linear and supercoiled DNA, leaving the supercoiled form intact. Furthermore, the inability of λ exonuclease to initiate digestion at nicks or gaps enables the removal of undesired linear DNA when nicked circular DNA has been enzymatically prepared from supercoiled DNA. This method can be useful in the preparation of homogeneous circular plasmid DNA required for therapeutic applications and biophysical studies.  相似文献   

9.
米曲霉来源的S1 核酸酶具有降解单链DNA或RNA的作用。在适当的条件下 ,该酶能将不同的环形DNA分子从超螺旋转变成开环和线形结构 ,对质粒pUC19的实验证明 ,S1 核酸酶的这种转变作用与加入的酶量呈正相关。在 2 5 μL总反应体积中 ,按 10 0ngDNA加入 5u至 17u的S1 核酸酶 ,能获得较高比例的线形DNA。由于微环DNA分子太小 ,单酶切位点的出现率较低 ,很难用常规方式进行克隆 ,以S1 核酸酶进行线形化是微环DNA克隆的途径。pC3是已知最小的真核生物线粒体DNA类质粒 (5 37bp) ,经S1 核酸酶线形化后 ,成功地克隆到pMD18 T载体上。  相似文献   

10.
Autonomous parvoviruses are thought to uniquely encapsidate single-stranded DNA of minus polarity. In contrast, the defective adeno-associated viruses separately encapsidate equal amounts of plus and minus DNA strands. We reexamined the uniqueness of minus strand encapsidation for the autonomous parvoviruses. Although we found that Kilham rat virus and H-1 virus encapsidate varying but small amounts of complementary-strand DNA, it was unexpected to find that LuIII virus encapsidated equal amounts of plus and minus DNA. The extracted LuIII DNA possessed properties of double-stranded replicative-form DNA, including insensitivity to S1 endonuclease, cleavage by restriction enzymes, and conversion to unit-length, single-stranded DNA when electrophoresed under denaturing conditions. However, the inability of this DNA to form single-stranded DNA circles when denatured and then renatured in the presence of formamide and the lack of double-stranded DNA circle formation after treatment with exonuclease III and reannealing shows a lack of sequence homology of the 3' and 5' termini of LuIII DNA, in contrast to adeno-associated virus DNA. Digestion of LuIII double-stranded DNA with EcoRI and HincII and separation of plus and minus DNA strands on composite agarose-acrylamide gels identified a heterogeneity present only in the plus DNA strand. These results suggest that strand specificity of viral DNA encapsidation is not a useful property for differentiation between the autonomous and defective parvoviruses. Furthermore, encapsidation by LuIII of equal amounts of complementary DNA strands in contrast to encapsidation of minus strands by H-1 virus, when propagated in the same host cell type, suggests that selection of strands for encapsidation is a virus-coded rather than host-controlled event.  相似文献   

11.
12.
Persistent hepadnavirus infection leads to oxidative stress and DNA damage through increased production of toxic oxygen radicals. In addition, hepadnaviral DNA integrations into chromosomal DNA can promote the process of hepatocarcinogenesis (M. Feitelson, Clin. Microbiol. Rev. 5:275-301, 1992). While previous studies have identified preferred integration sites in hepadnaviral genomes and suggested integration mechanisms (M. A. Buendia, Adv. Cancer Res. 59:167-226, 1992; C. E. Rogler, Curr. Top. Microbiol. Immunol. 168:103-141, 1991; C. Shih et al., J. Virol. 61:3491-3498, 1987), very little is known about the effects of agents which damage chromosomal DNA on the frequency of hepadnaviral DNA integrations. Using a recently developed subcloning approach to detect stable new integrations of duck hepatitis B virus (DHBV) (S. S. Gong, A. D. Jensen, and C. E. Rogler, J. Virol. 70:2000-2007, 1996), we tested the effects of increased chromosomal DNA damage induced by H2O2, or of the disturbance in DNA repair due to the inhibition of poly(ADP-ribose) polymerase (PARP), on the frequency of DHBV DNA integrations. Subclones of LMH-D21-6 cells, which replicate DHBV, were grown in the presence of various H2O2 concentrations and exhibited up to a threefold increase in viral DNA integration frequency in a dose-dependent manner. Moreover, inhibition of PARP, which plays a role in cellular responses to DNA breakage, by 3-aminobenzamide (3-AB) resulted in a sevenfold increase in the total number of new DHBV DNA integrations into host chromosomal DNA. Removal of either H2O2 or 3-AB from the culture medium in a subsequent cycle of subcloning was accompanied by a reversion back towards the original lower frequency of stable DHBV DNA integrations for LMH-D21-6 cells. These data support the hypothesis that DNA damage sites can serve as sites for hepadnaviral DNA integration, and that increasing the number of DNA damage sites dramatically increases viral integration frequency.  相似文献   

13.
The purine analog, 2-chloro-2'-deoxyadenosine triphosphate (CldATP), was incorporated enzymatically in place of dATP into the minus strand of M13mp18 duplex DNA. Its effect on protein-DNA interactions was assessed by determining the amount of DNA cleavage by type II restriction endonucleases. Substitution of chloroadenine (CIAde) for adenine (Ade) in DNA appreciably decreased the amount and rate of DNA cleavage of the minus strand when the analog was situated within the appropriate endonuclease recognition site. CIAde residues flanking a restriction site had variable effects. SmaI cleaved both CIAde-containing and control substrates with equal efficiency. NarI, however, was stimulated 1.5-fold by the presence of CIAde outside its recognition site. The effects of analog incorporation on restriction enzyme cleavage of an opposing unsubstituted strand of duplex DNA was examined by enzymatically incorporating CIdATP into the complementary minus strand of a 36-base oligonucleotide. Endonucleolytic cleavage of both plus and minus strands was reduced on 36-mers containing CIAde residues located within only the minus strand. These data suggest that CIAde residues incorporated into a single DNA strand may have an appreciable effect on DNA-protein interactions that involve one or both strands of duplex DNA.  相似文献   

14.
15.
16.
Habig JW  Loeb DD 《Journal of virology》2003,77(23):12412-12420
Two template switches are necessary during plus-strand DNA synthesis of the relaxed circular (RC) form of the hepadnavirus genome. The 3' end of the minus-strand DNA makes important contributions to both of these template switches. It acts as the donor site for the first template switch, called primer translocation, and subsequently acts as the acceptor site for the second template switch, termed circularization. Circularization involves transfer of the nascent 3' end of the plus strand from the 5' end of the minus-strand DNA to the 3' end, where further elongation can lead to production of RC DNA. In duck hepatitis B virus (DHBV), a small terminal redundancy (5'r and 3'r) on the ends of the minus-strand DNA has been shown to be important, but not sufficient, for circularization. We investigated what contribution, if any, the base composition of the terminal redundancy made to the circularization process. Using a genetic approach, we found a strong positive correlation between the fraction of A and T residues within the terminal redundancy and the efficiency of the circularization process in those variants. Additionally, we found that the level of in situ priming increases, at the expense of primer translocation, as the fraction of A and T residues in the 3'r decreases. Thus, a terminal redundancy rich in A and T residues is important for both plus-strand template switches in DHBV.  相似文献   

17.
XRCC1 protein is essential for viability in mammals and is required for efficient DNA single-strand break repair and genetic stability following DNA base damage. We report here that XRCC1-dependent strand break repair in G(1) phase of the cell cycle is abolished by mutations created within the XRCC1 BRCT domain that interact with DNA ligase III. In contrast, XRCC1-dependent DNA strand break repair in S phase is largely unaffected by these mutations. These data describe a cell cycle-specific role for a BRCT domain, and we conclude that the XRCC1-DNA ligase III complex is required for DNA strand break repair in G(1) phase of the cell cycle but is dispensable for this process in S phase. The S-phase DNA repair process can remove both strand breaks induced in S phase and those that persist from G(1) and can in part compensate for lack of repair in G(1). This process correlates with the appearance of XRCC1 nuclear foci that colocalize with Rad51 and may thus function in concert with homologous recombination.  相似文献   

18.
The DNA mismatch repair (MMR) system recognizes and repairs errors that escaped the proofreading function of DNA polymerases. To study molecular details of the MMR mechanism, in vitro biochemical assays require specific DNA substrates carrying mismatches and strand discrimination signals. Current approaches used to generate MMR substrates are time-consuming and/or not very flexible with respect to sequence context. Here we report an approach to generate small circular DNA containing a mismatch (nanocircles). Our method is based on the nicking of PCR products resulting in single-stranded 3' overhangs, which form DNA circles after annealing and ligation. Depending on the DNA template, one can generate mismatched circles containing a single hemimethylated GATC site (for use with the bacterial system) and/or nicking sites to generate DNA circles nicked in the top or bottom strand (for assays with the bacterial or eukaryotic MMR system). The size of the circles varied (323 to 1100 bp), their sequence was determined by the template DNA, and purification of the circles was achieved by ExoI/ExoIII digestion and/or gel extraction. The quality of the nanocircles was assessed by scanning-force microscopy and their suitability for in vitro repair initiation was examined using recombinant Escherichia coli MMR proteins.  相似文献   

19.
Rad51, Rad52, and RPA play central roles in homologous DNA recombination. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 has two distinct activities: to recruit Rad51 onto single-strand (ss)DNA that is complexed with the ssDNA-binding protein, RPA, and to anneal complementary ssDNA complexed with RPA. Here, we report that Rad52 promotes annealing of the ssDNA strand that is displaced by DNA strand exchange by Rad51 and RPA, to a second ssDNA strand. An RPA that is recombination-deficient (RPA(rfa1-t11)) failed to support annealing, explaining its in vivo phenotype. Escherichia coli RecO and SSB proteins, which are functional homologues of Rad52 and RPA, also facilitated the same reaction, demonstrating its conserved nature. We also demonstrate that the two activities of Rad52, recruiting Rad51 and annealing DNA, are coordinated in DNA strand exchange and second ssDNA capture.  相似文献   

20.
Cloned duck hepatitis B virus DNA is infectious in Pekin ducks   总被引:4,自引:13,他引:4       下载免费PDF全文
Approximately 10% of German-bred Pekin ducks were found to be chronically infected with duck hepatitis B virus (DHBV). The genomes of three German DHBV isolates analyzed were closely related but showed substantial restriction site polymorphism compared with U.S. isolates. We tested the infectivity of three sequence variants of cloned DHBV DNA by injecting them into the liver of virus-free ducklings. Most of these animals injected with double-stranded closed-circular or plasmid-integrated dimer DHBV DNA developed viremia, demonstrating the infectivity of all three cloned DHBV DNA variants. The cloned viruses produced were indistinguishable from those from naturally infected animals, implying that our experimental approach can be used to perform a functional analysis of the DHBV genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号