首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BLOC-1 (biogenesis of lysosome-related organelles complex-1) is critical for melanosome biogenesis and has also been implicated in neurological function and disease. We show that BLOC-1 is an elongated complex that contains one copy each of the eight subunits pallidin, Cappuccino, dysbindin, Snapin, Muted, BLOS1, BLOS2, and BLOS3. The complex appears as a linear chain of eight globular domains, ∼300 Å long and ∼30 Å in diameter. The individual domains are flexibly connected such that the linear chain undergoes bending by as much as 45°. Two stable subcomplexes were defined, pallidin-Cappuccino-BLOS1 and dysbindin-Snapin-BLOS2. Both subcomplexes are 1:1:1 heterotrimers that form extended structures as indicated by their hydrodynamic properties. The two subcomplexes appear to constitute flexible units within the larger BLOC-1 chain, an arrangement conducive to simultaneous interactions with multiple BLOC-1 partners in the course of tubular endosome biogenesis and sorting.  相似文献   

2.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease affecting vesicle trafficking among lysosome-related organelles. The Hps3, Hps5, and Hps6 genes are mutated in the cocoa, ruby-eye-2, and ruby-eye mouse pigment mutants, respectively, and their human orthologs are mutated in HPS3, HPS5, and HPS6 patients. These three genes encode novel proteins of unknown function. The phenotypes of Hps5/Hps5,Hps6/Hps6 and Hps3/Hps3,Hps6/Hps6 double mutant mice mimic, in coat and eye colors, in melanosome ultrastructure, and in levels of platelet dense granule serotonin, the corresponding phenotypes of single mutants. These facts suggest that the proteins encoded by these genes act within the same pathway or protein complex in vivo to regulate vesicle trafficking. Further, the Hps5 protein is destabilized within tissues of Hps3 and Hps6 mutants, as is the Hps6 protein within tissues of Hps3 and Hps5 mutants. Also, proteins encoded by these genes co-immunoprecipitate and occur in a complex of 350 kDa as determined by sucrose gradient and gel filtration analyses. Together, these results indicate that the Hps3, Hps5, and Hps6 proteins regulate vesicle trafficking to lysosome-related organelles at the physiological level as components of the BLOC-2 (biogenesis of lysosome-related organelles complex-2) protein complex and suggest that the pathogenesis and future therapies of HPS3, HPS5, and HPS6 patients are likely to be similar. Interaction of the Hps5 and Hps6 proteins within BLOC-2 is abolished by the three-amino acid deletion in the Hps6(ru) mutant allele, indicating that these three amino acids are important for normal BLOC-2 complex formation.  相似文献   

3.
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a ubiquitously expressed multisubunit protein complex required for the normal biogenesis of specialized organelles of the endosomal-lysosomal system, such as melanosomes and platelet dense granules. The complex is known to contain the coiled-coil-forming proteins, Pallidin, Muted, Cappuccino, and Dysbindin. The genes encoding these proteins are defective in inbred mouse strains that serve as models of Hermansky-Pudlak syndrome (HPS), a genetic disorder characterized by hypopigmentation and platelet storage pool deficiency. In addition, mutation of human Dysbindin causes HPS type 7. Here, we report the identification of another four subunits of the complex. One is Snapin, a coiled-coil-forming protein previously characterized as a binding partner of synaptosomal-associated proteins 25 and 23 and implicated in the regulation of membrane fusion events. The other three are previously uncharacterized proteins, which we named BLOC subunits 1, 2, and 3 (BLOS1, -2, and -3). Using specific antibodies to detect endogenous proteins from human and mouse cells, we found that Snapin, BLOS1, BLOS2, and BLOS3 co-immunoprecipitate, and co-fractionate upon size exclusion chromatography, with previously known BLOC-1 subunits. Furthermore, steady-state levels of the four proteins are significantly reduced in cells from pallid mice, which carry a mutation in Pallidin and display secondary loss of other BLOC-1 subunits. Yeast two-hybrid analyses suggest a network of binary interactions involving all of the previously known and newly identified subunits. Interestingly, the HPS mouse model strain, reduced pigmentation, carries a nonsense mutation in the gene encoding BLOS3. As judged from size exclusion chromatographic analyses, the reduced pigmentation mutation affects BLOC-1 assembly less severely than the pallid mutation. Mutations in the human genes encoding Snapin and the BLOS proteins could underlie novel forms of HPS.  相似文献   

4.
Hermansky-Pudlak syndrome (HPS) is a genetic disease of lysosome, melanosome, and granule biogenesis. Mutations of six different loci have been associated with HPS in humans, the most frequent of which are mutations of the HPS1 and HPS4 genes. Here, we show that the HPS1 and HPS4 proteins are components of two novel protein complexes involved in biogenesis of melanosome and lysosome-related organelles: biogenesis of lysosome-related organelles complex-(BLOC) 3 and BLOC-4. The phenotypes of Hps1-mutant (pale-ear; ep) and Hps4-mutant (light-ear; le) mice and humans are very similar, and cells from ep and le mice exhibit similar abnormalities of melanosome morphology. HPS1 protein is absent from ep-mutant cells, and HPS4 from le-mutant cells, but le-mutant cells also lack HPS1 protein. HPS4 protein seems to be necessary for stabilization of HPS1, and the HPS1 and HPS4 proteins co-immunoprecipitate, indicating that they are in a complex. HPS1 and HPS4 do not interact directly in a yeast two-hybrid system, although HPS4 interacts with itself. In a partially purified vesicular/organellar fraction, HPS1 and HPS4 are both components of a complex with a molecular mass of approximately 500 kDa, termed BLOC-3. Within BLOC-3, HPS1 and HPS4 are components of a discrete approximately 200-kDa module termed BLOC-4. In the cytosol, HPS1 (but not HPS4) is part of yet another complex, termed BLOC-5. We propose that the BLOC-3 and BLOC-4 HPS1.HPS4 complexes play a central role in trafficking cargo proteins to newly formed cytoplasmic organelles.  相似文献   

5.
Biogenesis of lysosome‐related organelles (LROs) complex‐1 (BLOC‐1) is an eight‐subunit complex involved in lysosomal trafficking. Interacting proteins of these subunits expand the understanding of its biological functions. With the implementation of the naïve Bayesian analysis, we found that a human uncharacterized 20 kDa coiled‐coil KxDL protein, KXD1, is a BLOS1‐interacting protein. In vitro binding assays confirmed the interaction between BLOS1 and KXD1. The mouse KXD1 homolog was widely expressed and absent in Kxd1 knockout (KO) mice. BLOS1 was apparently reduced in Kxd1‐KO mice. Mild defects in the melanosomes of the retinal pigment epithelia and in the platelet dense granules of the Kxd1‐KO mouse were observed, mimicking a mouse model of mild Hermansky–Pudlak syndrome that affects the biogenesis of LROs.  相似文献   

6.
The Hermansky–Pudlak syndrome defines a group of genetic disorders characterized by defective lysosome-related organelles such as melanosomes and platelet dense bodies. Hermansky–Pudlak syndrome can be caused by mutations of at least four genes in humans and 15 genes in mice. One of these genes is mutated in the pallid mouse strain and encodes a novel protein named pallidin (L. Huang, Y. M. Kuo and J. Gitschier, Nat Genet 1999; 23: 329–332). Pallidin has no homology to any other known protein and no recognizable functional motifs. We have conducted a biochemical characterization of human pallidin using a newly developed polyclonal antibody. We show that pallidin is a ubiquitously expressed ∼ 25 kDa protein found both in the cytosol and peripherally associated to membranes. Sedimentation velocity analyses show that native pallidin has a sedimentation coefficient of ∼ 5.1 S, much larger than expected from the molecular mass of the pallidin polypeptide. In line with this observation, cosedimentation and coprecipitation analyses reveal that pallidin is part of a hetero-oligomeric complex. One of the subunits of this complex is the product of another Hermansky–Pudlak syndrome gene, muted. Fibroblasts derived from the muted mouse strain exhibit reduced levels of pallidin, suggesting that the absence of the muted protein destabilizes pallidin. These observations indicate that pallidin is a subunit of a novel multi-protein complex involved in the biogenesis of lysosome-related organelles.  相似文献   

7.
Mutational analyses have revealed many genes that are required for proper biogenesis of lysosomes and lysosome-related organelles. The proteins encoded by these genes assemble into five distinct complexes (AP-3, BLOC-1-3, and HOPS) that either sort membrane proteins or interact with SNAREs. Several of these seemingly distinct complexes cause similar phenotypic defects when they are rendered defective by mutation, but the underlying cellular mechanism is not understood. Here, we show that the BLOC-1 complex resides on microvesicles that also contain AP-3 subunits and membrane proteins that are known AP-3 cargoes. Mouse mutants that cause BLOC-1 or AP-3 deficiencies affected the targeting of LAMP1, phosphatidylinositol-4-kinase type II alpha, and VAMP7-TI. VAMP7-TI is an R-SNARE involved in vesicle fusion with late endosomes/lysosomes, and its cellular levels were selectively decreased in cells that were either AP-3- or BLOC-1-deficient. Furthermore, BLOC-1 deficiency selectively altered the subcellular distribution of VAMP7-TI cognate SNAREs. These results indicate that the BLOC-1 and AP-3 protein complexes affect the targeting of SNARE and non-SNARE AP-3 cargoes and suggest a function of the BLOC-1 complex in membrane protein sorting.  相似文献   

8.
Hermansky-Pudlak syndrome (HPS) defines a group of autosomal recessive disorders characterized by defects in lysosome-related organelles such as melanosomes and platelet dense granules. The genes that are defective in each of the different forms of HPS in humans, or in HPS-like disorders in mice, are thought to encode components of a putative molecular machinery required for the formation of specialized organelles of the lysosomal system. This review discusses the biochemical and functional properties of the products of identified HPS genes, which include subunits of the AP-3 complex and the novel proteins HPS1p, HPS3p, HPS4p, pallidin and muted.  相似文献   

9.
Melanosomes are lysosome-related organelles within which melanin pigments are synthesized and stored in melanocytes and retinal pigment epithelial cells. Early ultrastructural studies of pigment cells revealed that melanosomes consist of a complex series of organelles; more recently, these structures have been correlated with cargo constituents. By studying the fate of melanosomal and endosomal cargo in melanocytic cells, the effects of disease-related mutations on melanosomal morphology, and the genes affected by these mutations, we are beginning to gain novel insights into the biogenesis of these complex organelles and their relationship to the endocytic pathway. These insights demonstrate how specialized cells integrate unique and ubiquitous molecular mechanisms in subverting the endosomal system to generate cell-type specific structures and their associated functions. Further dissection of the melanosomal system will likely shed light not only on the biogenesis of lysosome-related organelles but also on general aspects of vesicular transport in the endosomal system.  相似文献   

10.
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis.  相似文献   

11.
Pathogenic bacteria assemble a variety of adhesive structures on their surface for attachment to host cells. Some of these structures are quite complex. For example, the hair-like organelles known as pili or fimbriae are generally composed of several components and often exhibit composite morphologies. In gram-negative bacteria assembly of pili requires that the subunits cross the cytoplasmic membrane, fold correctly in the periplasm, target to the outer membrane, assemble into an ordered structure, and cross the outer membrane to the cell surface. Thus, pilus biogenesis provides a model for a number of basic biological problems including protein folding, trafficking, secretion, and the ordered assembly of proteins into complex structures. P pilus biogenesis represents one of the best-understood pilus systems. P pili are produced by 80-90% of all pyelonephritic Escherichia coli and are a major virulence determinant for urinary tract infections. Two specialized assembly factors known as the periplasmic chaperone and outer membrane usher are required for P pilus assembly. A chaperone/usher pathway is now known to be required for the biogenesis of more than 30 different adhesive structures in diverse gram-negative pathogenic bacteria. Elucidation of the chaperone/usher pathway was brought about through a powerful combination of molecular, biochemical, and biophysical techniques. This review discusses these approaches as they relate to pilus assembly, with an emphasis on newer techniques.  相似文献   

12.
Recent studies have led to the identification of a group of genes required for normal biogenesis of lysosome-related organelles such as melanosomes and platelet-dense granules. Two of these genes, which are defective in the pallid and muted mutant mouse strains, encode small, coiled-coil-forming proteins that display no homology to each other or to any known protein. We report that these two proteins, pallidin and muted, are components of a novel protein complex. We raised antibodies that allow for detection of pallidin from a wide variety of mammalian cells. Endogenous pallidin was distributed in both soluble and peripheral membrane protein fractions. Size-exclusion chromatography and sedimentation velocity analyses indicated that the bulk of cytosolic pallidin is a component of an asymmetric protein complex with a molecular mass of approximately 200 kDa. We named this complex BLOC-1 (for biogenesis of lysosome-related organelles complex 1). Steady-state pallidin protein levels were reduced in fibroblasts derived from muted and reduced pigmentation mice, suggesting that the genes defective in these two mutant strains could encode components of BLOC-1 that are required for pallidin stability. Co-immunoprecipitation and immunodepletion experiments using an antibody to muted confirmed that this protein is a subunit of BLOC-1. Yeast two-hybrid analyses revealed that pallidin is capable of self-association through a region that contains its two coiled-coil forming domains. Unlike AP-3-deficient pearl fibroblasts, which display defects in intracellular zinc storage, zinc distribution was not noticeably affected in pallid or muted fibroblasts. Interestingly, immunofluorescence and in vitro binding experiments demonstrated that pallidin/BLOC-1 is able to associate with actin filaments. We propose that BLOC-1 mediates the biogenesis of lysosome-related organelles by a mechanism that may involve self-assembly and interaction with the actin cytoskeleton.  相似文献   

13.
NOG1 is a nucleolar GTP-binding protein present in eukaryotes ranging from trypanosomes to humans. In this report we demonstrate that NOG1 is functionally linked to ribosome biogenesis. In sucrose density gradients Trypanosoma brucei NOG1 co-sediments with 60 S ribosomal subunits but not with monosomes. 60 S precursor RNAs are co-precipitated with NOG1. Together with the nucleolar localization of NOG1, these data indicate that NOG1 is associated with a precursor particle to the 60 S subunit. Disruption of NOG1 function through RNA interference led to a dramatic decrease in the levels of free 60 S particles and the appearance of an atypical rRNA intermediate in which ITS2 was not cleaved. Overexpression of mutant nog1 with a defect in its GTP binding motif on a wild type background caused a modest defect in 60 S biogenesis and a relative decrease in processing of the large subunit rRNAs. In contrast to the mutant protein, neither the N-terminal half of NOG1, which contains the GTP binding motifs, nor the C-terminal half of NOG1 associated with pre-ribosomal particles, although both localized to the nucleolus.  相似文献   

14.
Bovine PDEdelta was originally copurified with rod cGMP phosphodiesterase (PDE) and shown to interact with prenylated, carboxymethylated C-terminal Cys residues. Other studies showed that PDEdelta can interact with several small GTPases including Rab13, Ras, Rap, and Rho6, all of which are prenylated, as well as the N-terminal portion of retinitis pigmentosa GTPase regulator and Arl2/Arl3, which are not prenylated. We show by immunocytochemistry with a PDEdelta-specific antibody that PDEdelta is present in rods and cones. We find by yeast two-hybrid screening with a PDEdelta bait that it can interact with farnesylated rhodopsin kinase (GRK1) and that prenylation is essential for this interaction. In vitro binding assays indicate that both recombinant farnesylated GRK1 and geranylgeranylated GRK7 co-precipitate with a glutathione S-transferase-PDEdelta fusion protein. Using fluorescence resonance energy transfer techniques exploiting the intrinsic tryptophan fluorescence of PDEdelta and dansylated prenyl cysteines as fluorescent ligands, we show that PDEdelta specifically binds geranylgeranyl and farnesyl moieties with a Kd of 19.06 and 0.70 microm, respectively. Our experiments establish that PDEdelta functions as a prenyl-binding protein interacting with multiple prenylated proteins.  相似文献   

15.
Apicomplexan parasites harbour unique secretory organelles (dense granules, rhoptries and micronemes) that play essential functions in host infection. Toxoplasma gondii parasites seem to possess an atypical endosome‐like compartment, which contains an assortment of proteins that appear to be involved in vesicular sorting and trafficking towards secretory organelles. Recent studies highlighted the essential roles of many regulators such as Rab5A, Rab5C, sortilin‐like receptor and syntaxin‐6 in secretory organelle biogenesis. However, little is known about the protein complexes that recruit Rab‐GTPases and SNAREs for membrane tethering in Apicomplexa. In mammals and yeast, transport, tethering and fusion of vesicles from early endosomes to lysosomes and the vacuole, respectively, are mediated by CORVET and HOPS complexes, both built on the same Vps‐C core that includes Vps11 protein. Here, we show that a T. gondii Vps11 orthologue is essential for the biogenesis or proper subcellular localization of secretory organelle proteins. TgVps11 is a dynamic protein that associates with Golgi endosomal‐related compartments, the vacuole and immature apical secretory organelles. Conditional knock‐down of TgVps11 disrupts biogenesis of dense granules, rhoptries and micronemes. As a consequence, parasite motility, invasion, egress and intracellular growth are affected. This phenotype was confirmed with additional knock‐down mutants of the HOPS complex. In conclusion, we show that apicomplexan parasites use canonical regulators of the endolysosome system to accomplish essential parasite‐specific functions in the biogenesis of their unique secretory organelles.  相似文献   

16.
The Escherichia coli YidC protein belongs to the Oxa1 family of membrane proteins that have been suggested to facilitate the insertion and assembly of membrane proteins either in cooperation with the Sec translocase or as a separate entity. Recently, we have shown that depletion of YidC causes a specific defect in the functional assembly of F1F0 ATP synthase and cytochrome o oxidase. We now demonstrate that the insertion of in vitro-synthesized F1F0 ATP synthase subunit c (F0c) into inner membrane vesicles requires YidC. Insertion is independent of the proton motive force, and proteoliposomes containing only YidC catalyze the membrane insertion of F0c in its native transmembrane topology whereupon it assembles into large oligomers. Co-reconstituted SecYEG has no significant effect on the insertion efficiency. Remarkably, signal recognition particle and its membrane-bound receptor FtsY are not required for the membrane insertion of F0c. In conclusion, a novel membrane protein insertion pathway in E. coli is described in which YidC plays an exclusive role.  相似文献   

17.
Caenorhabditis elegans gut granules are intestine specific lysosome-related organelles with birefringent and autofluorescent contents. We identified pgp-2, which encodes an ABC transporter, in screens for genes required for the proper formation of gut granules. pgp-2(-) embryos mislocalize birefringent material into the intestinal lumen and are lacking in acidified intestinal V-ATPase-containing compartments. Adults without pgp-2(+) function similarly lack organelles with gut granule characteristics. These cellular phenotypes indicate that pgp-2(-) animals are defective in gut granule biogenesis. Double mutant analysis suggests that pgp-2(+) functions in parallel with the AP-3 adaptor complex during gut granule formation. We find that pgp-2 is expressed in the intestine where it functions in gut granule biogenesis and that PGP-2 localizes to the gut granule membrane. These results support a direct role of an ABC transporter in regulating lysosome biogenesis. Previously, pgp-2(+) activity has been shown to be necessary for the accumulation of Nile Red-stained fat in C. elegans. We show that gut granules are sites of fat storage in C. elegans embryos and adults. Notably, levels of triacylglycerides are relatively normal in animals defective in the formation of gut granules. Our results provide an explanation for the loss of Nile Red-stained fat in pgp-2(-) animals as well as insight into the specialized function of this lysosome-related organelle.  相似文献   

18.
The Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defective lysosome-related organelles. HPS results from mutations in either one of six human genes named HPS1 to HPS6, most of which encode proteins of unknown function. Here we report that the human HPS1 and HPS4 proteins are part of a complex named BLOC-3 (for biogenesis of lysosome-related organelles complex 3). Co-immunoprecipitation experiments demonstrated that epitope-tagged and endogenous HPS1 and HPS4 proteins assemble with each other in vivo. The HPS1.HPS4 complex is predominantly cytosolic, with a small amount being peripherally associated with membranes. Size exclusion chromatography and sedimentation velocity analyses of the cytosolic fraction indicate that HPS1 and HPS4 form a moderately asymmetric protein complex with a molecular mass of approximately 175 kDa. HPS4-deficient fibroblasts from light ear mice display normal distribution and trafficking of the lysosomal membrane protein, Lamp-2, in contrast to fibroblasts from AP-3-deficient pearl mice (HPS2), which exhibit increased trafficking of this lysosomal protein via the plasma membrane. Similarly, light ear fibroblasts display an apparently normal accumulation of Zn2+ in intracellular vesicles, unlike pearl fibroblasts, which exhibit a decreased intracellular Zn2+ storage. Taken together, these observations demonstrate that the HPS1 and HPS4 proteins are components of a cytosolic complex that is involved in the biogenesis of lysosomal-related organelles by a mechanism distinct from that operated by AP-3 complex.  相似文献   

19.
The rapid transport of ribosomal proteins (RPs) into the nucleus and their efficient assembly into pre-ribosomal particles are prerequisites for ribosome biogenesis. Proteins that act as dedicated chaperones for RPs to maintain their stability and facilitate their assembly have not been identified in filamentous fungi. PlCYP5 is a nuclear cyclophilin in the nematophagous fungus Purpureocillium lilacinum, whose expression is up-regulated during abiotic stress and nematode egg-parasitism. Here, we found that PlCYP5 co-translationally interacted with the unassembled small ribosomal subunit protein, PlRPS15 (uS19). PlRPS15 contained an eukaryote-specific N-terminal extension that mediated the interaction with PlCYP5. PlCYP5 increased the solubility of PlRPS15 independent of its catalytic peptide-prolyl isomerase function and supported the integration of PlRPS15 into pre-ribosomes. Consistently, the phenotypes of the PlCYP5 loss-of-function mutant were similar to those of the PlRPS15 knockdown mutant (e.g. growth and ribosome biogenesis defects). PlCYP5 homologs in Arabidopsis thaliana, Homo sapiens, Schizosaccharomyces pombe, Sclerotinia sclerotiorum, Botrytis cinerea and Metarhizium anisopliae were identified. Notably, PlCYP5-PlRPS15 homologs from three filamentous fungi interacted with each other but not those from other species. In summary, our data disclosed a unique dedicated chaperone system for RPs by cyclophilin in filamentous fungi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号