首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intratracheal instillation of the monocyte chemoattractant JE/monocyte chemoattractant protein (MCP)-1 in mice was recently shown to cause increased alveolar monocyte accumulation in the absence of lung inflammation, whereas combined JE/MCP-1/lipopolysaccharide (LPS) challenge provoked acute lung inflammation with early alveolar neutrophil and delayed alveolar monocyte influx. We evaluated the role of resident alveolar macrophages (rAM) in these leukocyte recruitment events and related phenomena of lung inflammation. Depletion of rAM by pretreatment of mice with liposomal clodronate did not affect the JE/MCP-1-driven alveolar monocyte accumulation, despite the observation that rAM constitutively expressed the JE/MCP-1 receptor CCR2, as analyzed by flow cytometry and immunohistochemistry. In contrast, depletion of rAM largely suppressed alveolar cytokine release as well as neutrophil and monocyte recruitment profiles upon combined JE/MCP-1/LPS treatment. Despite this strongly attenuated alveolar inflammatory response, increased lung permeability was still observed in rAM-depleted mice undergoing JE/MCP-1/LPS challenge. Lung leakage was abrogated by codepletion of circulating neutrophils or administration of anti-CD18. Collectively, rAM are not involved in JE/MCP-1-driven alveolar monocyte recruitment in noninflamed lungs but largely contribute to the alveolar cytokine response and enhanced early neutrophil and delayed monocyte influx under inflammatory conditions (JE/MCP-1/LPS deposition). Loss of lung barrier function observed under these conditions is rAM independent but involves circulating neutrophils via beta(2)-integrin engagement.  相似文献   

2.
Airway epithelial cells secrete proinflammatory mediators in response to LPS, but cytokine production by a prominent nonciliated bronchiolar epithelial cell, the Clara cell, specifically, is unknown. To investigate Clara cell cytokine production in response to LPS, we used a transformed murine Clara cell line, C22, and isolated Clara cells from C57Bl/6 mice. Stimulation of both cell types with LPS resulted in significant upregulation of keratinocyte-derived chemokine (KC) and monocyte chemoattractant protein-1, but did not induce TNF-alpha production. To determine whether LPS induces cytokine production by Clara cells in vivo, LPS was instilled intratracheally into mice. KC was expressed by Clara cells, alveolar type 2 cells, and alveolar macrophages, 2 h after LPS administration, as determined by in situ hybridization. TNF-alpha, although not expressed in airway epithelial cells, was expressed primarily in alveolar macrophages in response to LPS. To assess the impact of Clara cells on KC and TNF-alpha production in the lung in the early response to LPS, mice were treated with naphthalene to selectively induce Clara cell injury before LPS stimulation. KC expression in the airways and the lung periphery, and KC and TNF-alpha levels in the bronchoalveolar lavage fluid, were significantly reduced in naphthalene-treated vs. vehicle-treated mice after LPS stimulation. Furthermore, transwell cocultures of C22 cells and RAW264.7 macrophages indicated that C22 cells released a soluble factor(s) in response to LPS that enhanced macrophage production of TNF-alpha. These results indicate that Clara cells elaborate cytokines and modulate the lung innate immune response to LPS.  相似文献   

3.
Many acute and chronic lung diseases are characterized by the presence of increased numbers of activated macrophages. These macrophages are derived predominantly from newly recruited peripheral blood monocytes and may play a role in the amplification and perpetuation of an initial lung insult. The process of inflammatory cell recruitment is poorly understood, although the expression of inflammatory cell-specific chemoattractants and subsequent generation of chemotactic gradients is likely involved. Although immune cells such as macrophages and lymphocytes are known to generate several inflammatory cell chemoattractants, parenchymal cells can also synthesize and secrete a number of bioactive factors. We now demonstrate the generation of significant monocyte chemotactic activity from tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta-treated pulmonary type II-like epithelial cells (A549). The predominant inducible monocyte chemotaxin had an estimated molecular mass of approximately 14-15 kDa and was neutralized by specific antibody to human monocyte chemotactic protein-1 (MCP-1). Induction of activity was accompanied by increases in steady-state mRNA level for MCP-1. These data are consistent with the induction of MCP-1 expression from A549 cells by TNF and IL-1. MCP-1 production from A549 cells could be induced by lipopolysaccharide (LPS)-stimulated alveolar macrophage (AM)-conditioned media, but not by LPS alone. The inducing activity in AM-conditioned media was neutralized with specific antibodies to IL-1 beta, but not TNF-alpha. Our findings suggest that the alveolar epithelium can participate in inflammatory cell recruitment via the production of MCP-1 and that cytokine networking between contiguous alveolar macrophages and the pulmonary epithelium may be essential for parenchymal cell MCP-1 expression.  相似文献   

4.
Monocyte chemoattractant protein 1 (MCP-1) has an important influence on monocyte migration into sites of inflammation. Our understanding of the signal transduction pathways involved in the response of monocytes to MCP-1 is quite limited yet potentially significant for understanding and manipulating the inflammatory response. Prior studies have demonstrated a crucial regulatory role for cytosolic phospholipase A(2) (cPLA(2)) in monocyte chemotaxis to MCP-1. In these studies we investigated the role for another PLA(2), calcium-independent PLA(2) (iPLA(2)) in comparison to cPLA(2). Pharmacological inhibitors of PLA(2) were found to substantially inhibit chemotaxis. Using antisense oligodeoxyribonucleotide treatment we found that iPLA(2) expression is required for monocyte migration to MCP-1. Complete blocking of the chemotactic response was observed with inhibition of either iPLA(2) or cPLA(2) expression by their respective antisense oligodeoxyribonucleotide. In reconstitution experiments, lysophosphatidic acid completely restored MCP-1-stimulated migration in iPLA(2)-deficient monocytes, whereas lysophosphatidic acid was without effect in restoring migration in cPLA(2)-deficient monocytes. To the contrary, arachidonic acid fully restored migration of cPLA(2)-deficient monocytes while having no effect on the iPLA(2)-deficient monocytes. Additional studies revealed that neither enzyme appears to be upstream of the other indicating that iPLA(2) and cPLA(2) represent parallel regulatory pathways. These data demonstrate novel and distinct roles for these two phospholipases in this critical step in inflammation.  相似文献   

5.
Acute lung injury results in damage to the alveolar epithelium, leading to leak of proteins into the alveolar space and impaired gas exchange. Lung function can be restored only if the epithelial layer is restored. The process of reepithelialization requires migration of lung epithelial cells to cover denuded basement membranes. The factors that control the migration of lung epithelial cells are incompletely understood. We examined isolated murine type II alveolar epithelial cells (AECs) for expression of CC chemokine receptor 2 (CCR2) and functional consequences of the binding of the main CCR2 ligand monocyte chemoattractant protein-1 (MCP-1). We found that primary AECs bound MCP-1 and expressed CCR2 mRNA. These cells demonstrated functional consequences of CCR2 expression with migration in response to MCP-1 in chemotaxis/haptotaxis assays. Primary AECs cultured from mice lacking CCR2 did not respond to MCP-1. Monolayers of AECs lacking CCR2 demonstrated delayed closure of mechanical wounds compared with AEC monolayers expressing CCR2. Delayed closure of mechanical wounds of wild-type AECs was also demonstrated in the presence of anti-MCP-1 antibody. These data demonstrate for the first time that AECs express CCR2 and are capable of using this receptor for chemotaxis and healing of wounds. CCR2-MCP-1 interactions may be important in the process of reepithelialization after lung injury.  相似文献   

6.
Pulmonary fibrosis is an interstitial disorder of the lung parenchyma whose mechanism is poorly understood. Potential mechanisms include the infiltration of inflammatory cells to the lungs and the generation of pro-inflammatory mediators. In particular, idiopathic pulmonary fibrosis is a progressive and fatal form of the disorder characterized by alveolar inflammation, fibroblast proliferation and collagen deposition. Here, we investigated the role of cytosolic phospholipase A(2) (cPLA(2)) in pulmonary fibrosis using cPLA(2)-null mutant mice, as cPLA(2) is a key enzyme in the generation of pro-inflammatory eicosanoids. Disruption of the gene encoding cPLA(2) (Pla2g4a) attenuated IPF and inflammation induced by bleomycin administration. Bleomycin-induced overproduction of thromboxanes and leukotrienes in lung was significantly reduced in cPLA(2)-null mice. Our data suggest that cPLA(2) has an important role in the pathogenesis of pulmonary fibrosis. The inhibition of cPLA(2)-initiated pathways might provide a novel therapeutic approach to pulmonary fibrosis, for which no pharmaceutical agents are currently available.  相似文献   

7.
Oxidized phospholipids stimulate endothelial cells to bind monocytes, but not neutrophils, an initiating event in atherogenesis. Here, we investigate intracellular signaling events induced by oxidized phospholipids in human umbilical vein endothelial cells (HUVECs) that lead to specific monocyte adhesion. In a static adhesion assay, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine and one of its components, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine, stimulated HUVECs to bind U937 cells and human peripheral blood monocytes but not HL-60 cells or blood neutrophils. Monocyte adhesion was dependent on protein kinases A and C, extracellular signal-regulated kinase 1/2, p38 mitogen activated protein kinases (MAPKs), and cytosolic phospholipase A(2) (cPLA(2)). Inhibition of 12-lipoxygenase (12-LOX), but not cyclooxygenases, blocked monocyte adhesion, and addition of 12-hydroxyeicosatetraenoic acid (12-HETE) mimicked the effects of oxidized phospholipids. Peroxisome proliferator-activated receptor alpha (PPARalpha) was excluded as a possible target for 12-HETE, because monocyte adhesion was still induced in endothelial cells from PPARalpha null mice. Together, our results suggest that oxidized phospholipids stimulate HUVECs to specifically bind monocytes involving MAPK pathways, which lead to the activation of cPLA(2) and 12-LOX. Further analysis of signaling pathways induced by oxidized phospholipids that lead to specific monocyte adhesion should ultimately lead to the development of novel therapeutic approaches against chronic inflammatory diseases.  相似文献   

8.
Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-alpha further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-alpha) by MLE-12 cells, whereas H/R induced TNF-alpha, MCP-1, RANTES, MIP-1alpha, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-alpha by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-alpha, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.  相似文献   

9.
The CC chemokine ligand-2 (CCL2) and its receptor CCR2 are essential for monocyte trafficking under inflammatory conditions. However, the mechanisms that determine the intensity and duration of alveolar monocyte accumulation in response to CCL2 gradients in inflamed lungs have not been resolved. To determine the potential role of CCR2-expressing monocytes in regulating alveolar CCL2 levels, we compared leukocyte recruitment kinetics and alveolar CCL2 levels in wild-type and CCR2-deficient mice in response to intratracheal LPS challenge. In wild-type mice, LPS elicited a dose- and time-dependent alveolar monocyte accumulation accompanied by low CCL2 levels in bronchoalveolar lavage fluid (BALF). In contrast, LPS-treated CCR2-deficient mice lacked alveolar monocyte accumulation, which was accompanied by relatively high CCL2 levels in BALF. Similarly, wild-type mice that were treated systemically with the blocking anti-CCR2 antibody MC21 completely lacked LPS-induced alveolar monocyte trafficking that was associated with high CCL2 levels in BALF. Intratracheal application of anti-CCR2 antibody MC21 to locally block CCR2 on both resident and recruited cells did not affect LPS-induced alveolar monocyte trafficking but led to significantly increased BALF CCL2 levels. Reciprocally bone marrow-transplanted, LPS-treated wild-type and CCR2-deficient mice showed a strict inverse relationship between alveolar monocyte recruitment and BALF CCL2 levels. In addition, freshly isolated human and mouse monocytes were capable of integrating CCL2 in vitro. LPS-induced alveolar monocyte accumulation is accompanied by monocytic CCR2-dependent consumption of CCL2 levels in the lung. This feedback loop may limit the intensity of monocyte recruitment to inflamed lungs and play a role in the maintenance of homeostasis.  相似文献   

10.
Chemokine receptor-mediated recruitment of inflammatory cells is essential for innate immune defense against microbial infection. Recruitment of Ly6C(high) inflammatory monocytes from bone marrow to sites of microbial infection is dependent on CCR2, a chemokine receptor that responds to MCP-1 and MCP-3. Although CCR2(-/-) mice are markedly more susceptible to Listeria monocytogenes infection than are wild-type mice, MCP-1(-/-) mice have an intermediate phenotype, suggesting that other CCR2 ligands contribute to antimicrobial defense. Herein, we show that L. monocytogenes infection rapidly induces MCP-3 in tissue culture macrophages and in serum, spleen, liver, and kidney following in vivo infection. Only cytosol invasive L. monocytogenes induce MCP-3, suggesting that cytosolic innate immune detection mechanisms trigger chemokine production. MCP-3(-/-) mice clear bacteria less effectively from the spleen than do wild-type mice, a defect that correlates with diminished inflammatory monocyte recruitment. MCP-3(-/-) mice have significantly fewer Ly6C(high) monocytes in the spleen and bloodstream, and increased monocyte numbers in bone marrow. MCP-3(-/-) mice, like MCP-1(-/-) mice, have fewer TNF- and inducible NO synthase-producing dendritic cells (Tip-DCs) in the spleen following L. monocytogenes infection. Our data demonstrate that MCP-3 and MCP-1 provide parallel contributions to CCR2-mediated inflammatory monocyte recruitment and that both chemokines are required for optimal innate immune defense against L. monocytogenes infection.  相似文献   

11.
Mononuclear phagocytes are critical components of the innate host defense of the lung to inhaled bacterial pathogens. The monocyte chemotactic protein CCL2 plays a pivotal role in inflammatory mononuclear phagocyte recruitment. In this study, we tested the hypothesis that increased CCL2-dependent mononuclear phagocyte recruitment would improve lung innate host defense to infection with Streptococcus pneumoniae. CCL2 transgenic mice that overexpress human CCL2 protein in type II alveolar epithelial cells and secrete it into the alveolar air space showed a similar proinflammatory mediator response and neutrophilic alveolitis to challenge with S. pneumoniae as wild-type mice. However, CCL2 overexpressing mice showed an improved pneumococcal clearance and survival compared with wild-type mice that was associated with substantially increased lung mononuclear phagocyte subset accumulations upon pneumococcal challenge. Surprisingly, CCL2 overexpressing mice developed bronchiolitis obliterans upon pneumococcal challenge. Application of anti-CCR2 Ab MC21 to block the CCL2-CCR2 axis in CCL2 overexpressing mice, though completely abrogating bronchiolitis obliterans, led to progressive pneumococcal pneumonia. Collectively, these findings demonstrate the importance of the CCL2-CCR2 axis in the regulation of both the resolution/repair and remodelling processes after bacterial challenge and suggest that overwhelming innate immune responses may trigger bronchiolitis obliterans formation in bacterial lung infections.  相似文献   

12.
Regeneration of alveolar epithelia following severe pulmonary damage is critical for lung function. We and others have previously shown that Scgb1a1-expressing cells, most likely Clara cells, can give rise to newly generated alveolar type 2 cells (AT2s) in response to severe lung damage induced by either influenza virus infection or bleomycin treatment. In this study, we have investigated cellular pathway underlying the Clara cell to AT2 differentiation. We show that the initial intermediates are bronchiolar epithelial cells that exhibit Clara cell morphology and express Clara cell marker, Scgb1a1, as well as the AT2 cell marker, pro-surfactant protein C (pro-SPC). These cells, referred to as pro-SPC+ bronchiolar epithelial cells (or SBECs), gradually lose Scgb1a1 expression and give rise to pro-SPC+ cells in the ring structures in the damaged parenchyma, which appear to differentiate into AT2s via a process sharing some features with that observed during alveolar epithelial development in the embryonic lung. These findings suggest that SBECs are intermediates of Clara cell to AT2 differentiation during the repair of alveolar epithelia following severe pulmonary injury.  相似文献   

13.
Coordinated neutrophil and monocyte recruitment is a characteristic feature of acute lung inflammatory responses. We investigated the role of monocyte chemotactic protein-1 (CCL2, JE) and the chemokine receptor CCR2 in regulating alveolar leukocyte traffic. Groups of wild-type (WT) mice, CCR2-deficient mice, lethally irradiated CCR2-deficient and WT mice that were reciprocally bone marrow transplanted (chimeric CCR2 deficient and WT, respectively), chimeric CCR2-deficient mice with an enriched CCR2(+) alveolar macrophage population, and CCR2-deficient mice transfused with CCR2(+) mononuclear cells were treated with intratracheal CCL2 and/or Escherichia coli endotoxin. Our data show that alveolar monocyte recruitment is strictly dependent on CCR2. LPS-induced neutrophil migration to the lungs is CCR2 independent. However, when CCR2-bearing blood monocytes are present, alveolar neutrophil accumulation is accelerated and drastically amplified. We suggest that this hitherto unrecognized cooperativity between monocytes and neutrophils contributes to the strong, coordinated leukocyte efflux in lung inflammation.  相似文献   

14.
We examined the mechanisms involved in the development of lung lesions after infection with Cryptococcus neoformans by comparing the histopathological findings and chemokine responses in the lungs of mice infected with C. neoformans and assessed the effect of interleukin (IL) 12 which protects mice from lethal infection. In mice infected intratracheally with a highly virulent strain of C. neoformans, the yeast cells multiplied quickly in the alveolar spaces but only a poor cellular inflammatory response was observed throughout the course of infection. Very little or no production of chemokines, including MCP-1, RANTES, MIP-1alpha, MIP-1beta and IP-10, was detected at the mRNA level using RT-PCR as well as at a protein level in MCP-1, RANTES and MIP-1alpha. In contrast, intraperitoneal administration of IL-12 induced the synthesis of these chemokines and a marked cellular inflammatory response involving histiocytes and lymphocytes in infected mice. Our findings were confirmed by flow cytometry of intraparenchymal leukocytes obtained from lung homogenates which showed IL-12-induced accumulation of inflammatory cells consisting mostly of macrophages and CD4+ alphabeta T cells. On the other hand, C-X-C chemokines including MIP-2 and KC, which attract neutrophils, were produced in infected and PBS-treated mice but treatment with IL-12 showed a marginal effect on their level, and neutrophil accumulation was similar in PBS- and IL-12-treated mice infected with C. neoforman. Our results demonstrate a close correlation between chemokine levels and development of lung lesions, and suggest that the induction of chemokine synthesis may be one of the mechanisms of IL-12-induced protection against cryptococcal infection.  相似文献   

15.
Lung vascular permeability is acutely increased by high-pressure and high-volume ventilation. To determine the roles of mechanically activated cytosolic PLA2 (cPLA2)and Clara cell secretory protein (CCSP), a modulator of cPLA2 activity, we compared lung injury with and without a PLA2 inhibitor in wild-type mice and CCSP-null mice (CCSP-/-) ventilated with high and low peak inflation pressures (PIP) for 2- or 4-h periods. After ventilation with high PIP, we observed significant increases in the bronchoalveolar lavage albumin concentrations, lung wet-to-dry weight ratios, and lung myeloperoxidase in both genotypes compared with unventilated controls and low-PIP ventilated mice. All injury variables except myeloperoxidase were significantly greater in the CCSP-/- mice relative to wild-type mice. Inhibition of cPLA2 in wild-type and CCSP-/- mice ventilated at high PIP for 4 h significantly reduced bronchoalveolar lavage albumin and total protein and lung wet-to-dry weight ratios compared with vehicle-treated mice of the same genotype. Membrane phospho-cPLA2 and cPLA2 activities were significantly elevated in lung homogenates of high-PIP ventilated mice of both genotypes but were significantly higher in the CCSP-/- mice relative to the wild-type mice. Inhibition of cPLA2 significantly attenuated both the phospho-cPLA2 increase and increased cPLA2 activity due to high-PIP ventilation. We propose that mechanical activation of the cPLA2 pathway contributes to acute high PIP-induced lung injury and that CCSP may reduce this injury through inhibition of the cPLA2 pathway and reduction of proinflammatory products produced by this pathway.  相似文献   

16.
17.
Mice deficient in tissue inhibitor of metalloproteinase-3 (TIMP-3) develop an emphysema-like phenotype involving increased pulmonary compliance, tissue degradation, and matrix metalloproteinase (MMP) activity. After a septic insult, they develop a further increase in compliance that is thought to be a result of heightened metalloproteinase activity produced by the alveolar macrophage, potentially modeling an emphysemic exacerbation. Therefore, we hypothesized that TIMP-3 null mice lacking alveolar macrophages would not be susceptible to the altered lung function associated with a septic insult. TIMP-3 null and wild-type (WT) mice were depleted of alveolar macrophages before the induction of a septic insult and assessed for alteration in lung mechanics, alveolar structure, metalloproteinase levels, and inflammation. The results showed that TIMP-3 null mice lacking alveolar macrophages were protected from sepsis-induced alterations in lung mechanics, particularly pulmonary compliance, a finding that was supported by changes in alveolar structure. Additionally, changes in lung mechanics involved primarily peripheral tissue vs. central airways as determined using the flexiVent system. From investigation into possible molecules that could cause these alterations, it was found that although several proteases and inflammatory mediators were increased during the septic response, only MMP-7 was attenuated after macrophage depletion. In conclusion, the alveolar macrophage is essential for the TIMP-3 null sepsis-induced compliance alterations. This response may be mediated in part by MMP-7 activity but occurs independently of inflammatory cytokine and/or chemokine concentrations.  相似文献   

18.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

19.
Influenza A virus pandemics and emerging anti-viral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and lung inflammation. We investigated whether the primary enzymatic source of inflammatory cell ROS (reactive oxygen species), Nox2-containing NADPH oxidase, is a novel pharmacological target against the lung inflammation caused by influenza A viruses. Male WT (C57BL/6) and Nox2(-/y) mice were infected intranasally with low pathogenicity (X-31, H3N2) or higher pathogenicity (PR8, H1N1) influenza A virus. Viral titer, airways inflammation, superoxide and peroxynitrite production, lung histopathology, pro-inflammatory (MCP-1) and antiviral (IL-1β) cytokines/chemokines, CD8(+) T cell effector function and alveolar epithelial cell apoptosis were assessed. Infection of Nox2(-/y) mice with X-31 virus resulted in a significant reduction in viral titers, BALF macrophages, peri-bronchial inflammation, BALF inflammatory cell superoxide and lung tissue peroxynitrite production, MCP-1 levels and alveolar epithelial cell apoptosis when compared to WT control mice. Lung levels of IL-1β were ~3-fold higher in Nox2(-/y) mice. The numbers of influenza-specific CD8+D(b)NP(366)+ and D(b)PA(224)+ T cells in the BALF and spleen were comparable in WT and Nox2(-/y) mice. In vivo administration of the Nox2 inhibitor apocynin significantly suppressed viral titer, airways inflammation and inflammatory cell superoxide production following infection with X-31 or PR8. In conclusion, these findings indicate that Nox2 inhibitors have therapeutic potential for control of lung inflammation and damage in an influenza strain-independent manner.  相似文献   

20.
Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2), the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号