首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monocyte adherence to endothelial cells (EC) is selectively increased during inflammation. The mechanisms underlying monocyte-EC interaction indicated the involvement of surface-adhesion molecules on monocytes and EC. In earlier studies we noticed that the monocyte-specific mAb, designated mAb 63D3, in contrast to mAb against the beta 2-integrin molecules, inhibited the monocyte binding to monolayers of rIL-1 alpha-stimulated venous EC. The aim of the present study was to further characterize the Ag recognized by mAb 63D3 and to investigate the specific contribution of this Ag to the adherence of monocytes to cultured human macrovascular venous or arterial EC. Flow cytometric analysis demonstrated that the 63D3 Ag is expressed exclusively on the surface of peripheral blood monocytes. SDS-PAGE analysis of mAb 63D3 immunoprecipitates of 125I-labeled human monocyte surface proteins revealed that the target Ag for mAb 63D3 is a 52- to 55-kDa molecule identical to the myeloid differentiation protein CD14. Stimulation of EC with rIL-1 alpha or rTNF-alpha for 4 or 24 h or rIFN-gamma for 24 h increased (p less than 0.005) the number of monocytes bound to both types of EC. This cytokine-induced increase in monocyte adherence was significantly (p less than 0.0005) inhibited when the monocytes were coated with various mAb against CD14. The binding of monocytes to nonstimulated venous or arterial EC was not inhibited by anti-CD14 mAb. Our results lead to the conclusion that CD14 molecules, which on basis of their structure and m.w. are not related to the beta 2-integrin family of heterodimeric leukocyte adhesion molecules, participate in the binding of monocytes to cytokine-stimulated EC.  相似文献   

2.
Divergent response to LPS and bacteria in CD14-deficient murine macrophages   总被引:10,自引:0,他引:10  
Gram-negative bacteria and the LPS constituent of their outer membranes stimulate the release of inflammatory mediators believed to be responsible for the clinical manifestations of septic shock. The GPI-linked membrane protein, CD14, initiates the signaling cascade responsible for the induction of this inflammatory response by LPS. In this paper, we report the generation and characterization of CD14-null mice in which the entire coding region of CD14 was deleted. As expected, LPS failed to elicit TNF-alpha and IL-6 production in macrophages taken from these animals, and this loss in responsiveness is associated with impaired activation of both the NF-kappaB and the c-Jun N-terminal mitogen-activated protein kinase pathways. The binding and uptake of heat-killed Escherichia coli, measured by FACS analysis, did not differ between CD14-null and wild-type macrophages. However, in contrast to the findings with LPS, whole E. coli stimulated similar levels of TNF-alpha release from CD14-null and wild-type macrophages at a dose of 10 bioparticles per cell. This effect was dose dependent, and at lower bacterial concentrations CD14-deficient macrophages produced significantly less TNF-alpha than wild type. Approximately half of this CD14-independent response appeared to be mediated by CD11b/CD18, as demonstrated by receptor blockade using neutrophil inhibitory factor. An inhibitor of phagocytosis, cytochalasin B, abrogated the induction of TNF-alpha in CD14-deficient macrophages by E. coli. These data indicate that CD14 is essential for macrophage responses to free LPS, whereas other receptors, including CD11b/CD18, can compensate for the loss of CD14 in response to whole bacteria.  相似文献   

3.
The endothelial response to LPS is critical in the recruitment of leukocytes, thereby allowing the host to survive Gram-negative infection. Herein, we investigated the roles of soluble CD14 (sCD14) and membrane CD14 (mCD14) in the endothelial response to low level LPS (0.1 ng/ml), intermediate level LPS (10 ng/ml), and high level LPS (1000 ng/ml). Removal of sCD14 from serum and sCD14-negative serum prevented low level LPS detection and subsequent response. Addition of recombinant sCD14 back into the endothelial system rescued the endothelial response. GPI-linked mCD14 removal from endothelium or endothelial treatment with a CD14 mAb prevented responses to low-level LPS even in the presence of sCD14. This demonstrates essential nonoverlapping roles for both mCD14 and sCD14 in the detection of low-level LPS. At intermediate levels of LPS, sCD14 was not required, but blocking mCD14 still prevented endothelial LPS detection and E-selectin expression, even in the presence of sCD14, suggesting that sCD14 cannot substitute for mCD14. At very high levels of LPS, the absence of mCD14 and sCD14 did not abrogate TLR4-dependent, E-selectin synthesis in response to LPS. The MyD88 independent pathway was detected in endothelium (presence of TRIF-related adaptor molecule TRAM). The MyD88-independent response (IFN-beta) in endothelium required mCD14 even at the highest LPS dose tested. Our results demonstrate an essential role for endothelial mCD14 that cannot be replaced by sCD14. Furthermore, we have provided evidence for a TRAM pathway in endothelium that is dependent on mCD14 even when other responses are no longer mCD14 dependent.  相似文献   

4.
Inflammatory responses of myeloid cells to LPS are mediated through CD14, a glycosylphosphatidylinositol-anchored receptor that binds LPS. Since CD14 does not traverse the plasma membrane and alternatively anchored forms of CD14 still enable LPS-induced cellular activation, the precise role of CD14 in mediating these responses remains unknown. To address this, we created a transmembrane and a glycosylphosphatidylinositol-anchored form of LPS-binding protein (LBP), a component of serum that binds and transfers LPS to other molecules. Stably transfected Chinese hamster ovary (CHO) fibroblast and U373 astrocytoma cell lines expressing membrane-anchored LBP (mLBP), as well as separate CHO and U373 cell lines expressing membrane CD14 (mCD14), were subsequently generated. Under serum-free conditions, CHO and U373 cells expressing mCD14 responded to as little as 0.1 ng/ml of LPS, as measured by NF-kappaB activation as well as ICAM and IL-6 production. Conversely, the vector control and mLBP-expressing cell lines did not respond under serum-free conditions even in the presence of more than 100 ng/ml of LPS. All the cell lines exhibited responses to less than 1 ng/ml of LPS in the presence of the soluble form of CD14, demonstrating that they are still capable of LPS-induced activation. Taken together, these results demonstrate that mLBP, a protein that brings LPS to the cell surface, does not mediate cellular responses to LPS independently of CD14. These findings suggest that CD14 performs a more specific role in mediating responses to LPS than that of simply bringing LPS to the cell surface.  相似文献   

5.
Geldanamycin (GA) is an antibiotic produced by Actinomyces, which specifically inhibits the function of the heat shock protein 90 family. Treatment of a murine macrophage cell line (J774) with GA resulted in a reduced response to Escherichia coli lipopolysaccharide (LPS) as visualized by a decrease of NF-kappaB translocation into the nucleus and secretion of tumor necrosis factor alpha (TNF-alpha). To elucidate the mechanism of this effect, the expression of CD14, the formal LPS receptor, was analyzed. Cells treated with GA showed a reduced level of surface CD14 detected by immunostaining, whereas the expression of other surface receptors, such as FC-gamma receptor and tumor necrosis factor receptors (TNF-R1 and TNF-R2), was unaffected. The reduced surface level of CD14 was not due to a reduction in its expression because CD14 steady state mRNA levels or the total cellular pool of CD14 was not altered by GA treatment. Surface CD14 was more rapidly internalized after GA treatment (2-3 h) than after incubation with cycloheximide. Immunostaining of permeabilized cells after GA treatment revealed a higher intracellular content of CD14 colocalizing with calnexin, an endoplasmic reticulum (ER) protein. These results suggest that the decrease in CD14 surface expression after GA treatment is due to rapid internalization without new replacement. These effects may be due to the inhibition of Hsp90 and Grp94 by GA in macrophages.  相似文献   

6.
The kinetics of the interaction of lipopolysaccharide (LPS), lipopolysaccharide binding protein (LBP) and CD14 was studied using surface plasmon resonance. The association and dissociation rate constants for the binding of LPS and rsCD14 were 2.9 x 10(4) M(-1) s(-1) and 0.07 s(-1) respectively, yielding a binding constant of 4.2 x 10(5) M(-1). Significantly, the presence of LBP increased not only the association rate but also the association constant for the interaction between LPS and CD14 by three orders of magnitude. Our experimental results suggest that LBP interacts with LPS and CD14 to form a stable trimolecular complex that has significant functional implications as it allows monocytes to detect the presence of LPS at a concentration as low as 10 pg/ml or 2 pM, and to respond by secreting interleukin-6. Thus, LBP is not merely transferring LPS to CD14 but it forms an integral part of the LPS-rLBP-rsCD14 complex.  相似文献   

7.
LPS介导细胞激活的信号转导:从CD14到p38MAPK通路的研究   总被引:27,自引:0,他引:27  
近年来对脂多糖(LPS)介导细胞激活的信号转导过程已取得实质性进展,LPS与血浆LPS结合蛋白(LBP)结合被运输到单核巨噬细胞表面,与mCD14受体结合起起细胞激活。MAPK参与了LPS激活细胞产生肿瘤坏死因子(TNF)等活性物质的细胞内信号转导过程。p38MAPK对TNF-α等细胞因子具有重要的调节作用。对LPS激活细胞的信号转导研究呆能为治疗内毒素休克提供新的理论和思路。  相似文献   

8.
Heparin is one of the most effective drugs for preventing and treating thromboembolic complications in surgical patients. Recent evidence suggests that heparin enhances the proinflammatory responses of human peripheral blood monocytes to Gram-negative endotoxin (LPS). We have identified LPS-binding protein (LBP) as a novel heparin-binding plasma protein. The affinity of LPB to heparin was KD = 55 +/- 8 nM, as measured by surface plasmon resonance. Using a fluorescence-based assay, we showed that clinically used heparin preparations significantly enhance the ability of LBP to catalytically disaggregate and transfer LPS to CD14, the LPS receptor. The presence of clinically relevant heparin concentrations in human whole blood increased LPS-induced production of the proinflammatory cytokine IL-8. Fondaparinux, which is identical with the antithrombin III-binding pentasaccharide in heparin, did not bind to LBP or alter LBP function. Thus, this novel anticoagulant drug is a potential candidate for safe administration to patients who have endotoxemia and require anticoagulation.  相似文献   

9.
Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins   总被引:2,自引:0,他引:2  
TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants (KD) of LPS for immobilized CD14 and MD-2 were 8.7 microM, and 2.3 microM, respectively. The association rate constant (Kon) of LPS for MD-2 was 5.61 x 10(3) M-1S-1, and the dissociation rate constant (Koff) was 1.28 10 2 S 1, revealing slow association and fast dissociation with an affinity constant KD of 2.33 x 10-6 M at 25 degreesC. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.  相似文献   

10.
Toll receptors,CD14, and macrophage activation and deactivation by LPS   总被引:17,自引:0,他引:17  
This review will focus on the molecular mechanisms of macrophage activation and desensitization by bacterial lipopolysaccharide (LPS). The most recent advances in the understanding of the function of the LPS receptor complex and its role in the development of the septic shock syndrome and endotoxin tolerance will be discussed.  相似文献   

11.
12.
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.  相似文献   

13.
Toll‐like receptor 4 (TLR4) is responsible for the immediate response to Gram‐negative bacteria and signals via two main pathways by recruitment of distinct pairs of adaptor proteins. Mal‐MyD88 [Mal (MyD88‐adaptor‐like) ‐ MYD88 (Myeloid differentiation primary response gene (88))] is recruited to the plasma membrane to initiate the signaling cascade leading to production of pro‐inflammatory cytokines while TRAM‐TRIF [TRAM (TRIF‐related adaptor molecule)‐TRIF (TIR‐domain‐containing adapter‐inducing interferon‐β)] is recruited to early endosomes to initiate the subsequent production of type I interferons. We have investigated the dynamics of TLR4 and TRAM during lipopolysaccharide (LPS) stimulation. We found that LPS induced a CD14‐dependent immobile fraction of TLR4 in the plasma membrane. Total internal reflection fluorescence microscopy (TIRF) revealed that LPS stimulation induced clustering of TLR4 into small punctate structures in the plasma membrane containing CD14/LPS and clathrin, both in HEK293 cells and the macrophage model cell line U373‐CD14. These results suggest that laterally immobilized TLR4 receptor complexes are being formed and prepared for endocytosis. RAB11A was found to be involved in localizing TRAM to the endocytic recycling compartment (ERC) and to early sorting endosomes. Moreover, CD14/LPS but not TRAM was immobilized on RAB11A‐positive endosomes, which indicates that TRAM and CD14/LPS can independently be recruited to endosomes.   相似文献   

14.
CD44 contributes to T cell activation   总被引:43,自引:0,他引:43  
We demonstrate here that the CD44 molecule, which mediates lymphocyte adhesion to high endothelial venules (HEV), is also involved in the delivery of an activation signal to the T cell. We have produced a CD44 mAb (H90) which is able to block the binding of lymphocytes to high endothelial venules. H90 had no effect on [3H]TdR incorporation of whole PBL stimulated by lectins, allogeneic cells, or CD3 mAb in the soluble phase; in contrast, it strongly increased [3H]TdR incorporation of PBL stimulated by CD2 pairs of mAb or by CD3 mAb linked to the plastic culture plates, when purified T cells were used, H90 mAb could efficiently induce them to proliferate after a primary signal of activation delivered via cross-linked CD3 or via CD2, an effect mediated by Il-2 synthesis and Il-2R expression. Thus, the effect of H90 mAb resembles the mitogenic effect of CD28 "9.3" mAb. However, several results show that CD28 and CD44 mediate different signals to the T cells: i) in contrast to CD28 mAb, CD44 mAb cannot complement the signal delivered by a soluble CD3 mAb, lectins, or PMA; ii) CD44 mAb, at the difference of CD28 mAb, cannot induce CD3+ thymocytes to proliferate in conjunction with a first signal provided via cross-linked CD3 or via CD2; iii) F(ab) fragments of H90 were efficient, whereas divalent fragments of CD29 9.3 mAb are required to produce activation signals; and iv) CD44 and CD28 mAb produce a very strong synergistic effect on T cell proliferation. These results fit with previous ones showing that endothelial cells can play the role of accessory cell in T cell activation and that a hierarchy of signaling can be delivered to T cells via CD3 and CD2.  相似文献   

15.
Innate immune receptors are crucial for defense against microorganisms. Recently, a cross-talk between innate and adaptive immunity has been considered. Here, we provide first evidence for a role of the key innate immune receptor, LPS receptor (CD14) in pathophysiology of experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. Indicating a functional importance in vivo, we show that CD14 deficiency increased clinical symptoms in active experimental autoimmune encephalomyelitis. Consistent with these observations, CD14 deficient mice exhibited a markedly enhanced infiltration of monocytes and neutrophils in brain and spinal cord. Moreover, we observed an increased immunoreactivity of CD14 in biopsy and post mortem brain tissues of multiple sclerosis patients compared to age-matched controls. Thus, the key innate immune receptor, CD14, may be of pathophysiological relevance in experimental autoimmune encephalomyelitis and multiple sclerosis.  相似文献   

16.

Background

MIF is a critical mediator of the host defense, and is involved in both acute and chronic responses in the lung. Neutralization of MIF reduces neutrophil accumulation into the lung in animal models. We hypothesized that MIF, in the alveolar space, promotes neutrophil accumulation via activation of the CD74 receptor on macrophages.

Methods

To determine whether macrophage CD74 surface expression contributes MIF-induced neutrophil accumulation, we instilled recombinant MIF (r-MIF) into the trachea of mice in the presence or absence of anti-CD74 antibody or the MIF specific inhibitor, ISO-1. Using macrophage culture, we examined the downstream pathways of MIF-induced activation that lead to neutrophil accumulation.

Results

Intratracheal instillation of r-MIF increased the number of neutrophils as well as the concentration of macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived chemokine (KC) in BAL fluids. CD74 was found to be expressed on the surface of alveolar macrophages, and MIF-induced MIP-2 accumulation was dependent on p44/p42 MAPK in macrophages. Anti-CD74 antibody inhibited MIF-induced p44/p42 MAPK phosphorylation and MIP-2 release by macrophages. Furthermore, we show that anti-CD74 antibody inhibits MIF-induced alveolar accumulation of MIP-2 (control IgG vs. CD74 Ab; 477.1 ± 136.7 vs. 242.2 ± 102.2 pg/ml, p < 0.05), KC (1796.2 ± 436.1 vs. 1138.2 ± 310.2 pg/ml, p < 0.05) and neutrophils (total number of neutrophils, 3.33 ± 0.93 × 104 vs. 1.90 ± 0.61 × 104, p < 0.05) in our mouse model.

Conclusion

MIF-induced neutrophil accumulation in the alveolar space results from interaction with CD74 expressed on the surface of alveolar macrophage cells. This interaction induces p44/p42 MAPK activation and chemokine release. The data suggest that MIF and its receptor, CD74, may be useful targets to reduce neutrophilic lung inflammation, and acute lung injury.  相似文献   

17.
To determine whether endothelium-derived relaxing factor (EDRF) contributes to the regulation of endothelial permeability, the transendothelial flux of 14C-sucrose, a marker for the paracellular pathway across endothelial monolayers (Oliver, J. Cell. Physiol. 145:536-548, 1990), was examined in monolayers of bovine aortic endothelial cells grown on collagen-coated filters. The permeability coefficient of 14C-sucrose was significantly decreased by 10(-3) M 8-Bromoguanosine 3',5'-cyclic monophosphate or by 5 x 10(-6) M glyceryl trinitrate, an activator of soluble guanylate cyclase. Depletion of L-arginine from endothelial monolayers increased 14C-sucrose permeability from 3.21 +/- 0.59 to 3.88 +/- 0.50 x 10(-5) cm.sec-1 (mean +/- SEM; n = 6; P < 0.05). The acute administration of 5 x 10(-4) M L-arginine to monolayers depleted of this amino acid decreased 14C-sucrose permeability from 2.91 +/- 0.27 to 2.52 +/- 0.26 x 10(-5) cm.sec-1 (n = 11; P < 0.05). 14C-sucrose permeability was increased by 10(-7) M bradykinin and this effect was enhanced by the presence of each one of the following compounds: 10(-5) M methylene blue, 4 x 10(-6) M oxyhemoglobin, 5 x 10(-4) M NG-methyl-L-arginine or 5 x 10(-4) M N omega-nitro-L-arginine. These results suggest that EDRF contributes to the sealing of the endothelial monolayer and that EDRF released by bradykinin acts as a feedback inhibitor attenuating the increase in endothelial permeability induced by this peptide. Because endothelial cells have the ability to contract and relax and possess guanylate cyclase responsive to nitric oxide, our results suggest that EDRF decreases 14C-sucrose permeability by relaxing endothelial cells, thereby narrowing the width of endothelial junctions.  相似文献   

18.
19.
Peripheral blood CD14(+)CD16(++) monocytes (Mo) are a rare Mo subpopulation known to undergo expansion in various diseases. We show here that IL-10 in the presence of M-CSF and IL-4 triggers the generation of CD14(+)CD16(++) cells from highly purified human cord blood (CB) and adult blood Mo. CB Mo were more sensitive to this cytokine combination than adult Mo. IL-10-induced CD14(+)CD16(++) cells that expressed dendritic cell markers: CD80, CD86, HLA-DR, and CD83 and initiated significantly decreased allogeneic mixed lymphocyte reactions (MLRs). Blockage of CD86, but not CD80, further down-modulated MLRs induced by CD14(+)CD16(++)cells. CD14(+)CD16(++) cells had similar features to CD14(+)CD16(++) Mo in that they expressed increased level of CCR5, efficiently produced TNF-alpha, and displayed higher MLR than CD14(+)CD16(-) Mo. Together, these results demonstrate that M-CSF, IL-4, and IL-10 drive Mo into CD14(+)CD16(++) cells similar to those identified in vivo, and CB Mo, due to their increased responsiveness, may be a useful starting cell source to study differentiation of CD14(+)CD16(++) cells.  相似文献   

20.
Progression through the cell cycle relies on oscillation of cyclin-dependent kinase (Cdk) activity. One mechanism for downregulating Cdk signaling is to activate opposing phosphatases. The Cdc14 family of phosphatases counteracts Cdk1 phosphorylation in diverse organisms to allow proper exit from mitosis and cytokinesis. However, the role of the vertebrate CDC14 phosphatases, CDC14A and CDC14B, in re-setting the cell for interphase remains unclear. To understand Cdc14 function in vertebrates, we cloned the zebrafish cdc14b gene and used antisense morpholino oligonucleotides and an insertional mutation to inhibit its function during early development. Loss of Cdc14B function led to an array of phenotypes, including hydrocephaly, curved body, kidney cysts and left-right asymmetry defects, reminiscent of zebrafish mutants with defective cilia. Indeed, we report that motile and primary cilia were shorter in cdc14b-deficient embryos. We also demonstrate that Cdc14B function in ciliogenesis requires its phosphatase activity and can be dissociated from its function in cell cycle control. Finally, we propose that Cdc14B plays a role in the regulation of cilia length in a pathway independent of fibroblast growth factor (FGF). This first study of a loss of function of a Cdc14 family member in a vertebrate organism reveals a new role for Cdc14B in ciliogenesis and consequently in a number of developmental processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号