首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the thickness of the PTB7‐Th:PC71BM bulk heterojunction (BHJ) film and the PF3N‐2TNDI electron transport layer (ETL) is systematically tuned to achieve polymer solar cells (PSCs) with optimized power conversion efficiency (PCE) of over 9% when an ultrathin BHJ of 50 nm is used. Optical modeling suggests that the high PCE is attributed to the optical spacer effect from the ETL, which not only maximizes the optical field within the BHJ film but also facilitates the formation of a more homogeneously distributed charge generation profile across the BHJ film. Experimentally it is further proved that the extra photocurrent produced at the PTB7‐Th/PF3N‐2TNDI interface also contributes to the improved performance. Taking advantage of this high performance thin film device structure, one step further is taken to fabricate semitransparent PSCs (ST‐PSCs) by using an ultrathin transparent Ag cathode to replace the thick Ag mirror cathode, yielding a series of high performance ST‐PSCs with PCEs over 6% and average visible transmittance between 20% and 30%. These ST‐PSCs also possess remarkable transparency color perception and rendering properties, which are state‐of‐the‐art and fulfill the performance criteria for potential use as power‐generating windows in near future.  相似文献   

2.
Interfaces between the photoactive layers and electrodes play critical roles in controlling the performance of optoelectronic devices. Herein, a novel nonconjugated polymer additive (nPA), poly(2‐vinylpyridine) (P2VP), is reported for modifying the interfaces between the bulk‐heterojunction (BHJ) and cathode/metal oxide (MO) layers. The P2VP nPA enables remarkably enhanced power conversion efficiencies (PCEs) and ambient stability in different types of polymer solar cells (PSCs). Importantly, interfacial engineering can be achieved during deposition of the P2VP nPA‐containing BHJ active layer via simple, one‐step solution processing. The P2VP nPA has much higher surface energy than the BHJ active components and stronger interaction with the surface of MO, which affords spontaneous vertical phase separation from the BHJ layer on the MO surface by one‐step solution processing. The self‐assembled P2VP layer substantially reduces the work function and surface defect density of MO, thereby minimizing the charge‐extraction barrier and increasing the PCEs of the PSCs significantly, i.e., PTB7‐Th:PC71BM (10.53%→11.14%), PTB7:PC71BM (7.37%→8.67%), and PTB7‐Th:P(NDI2HD‐T) all‐PSCs (5.52%→6.14%). In addition, the lifetimes of the PSCs are greatly improved by the use of the P2VP nPA.  相似文献   

3.
Most optimized donor‐acceptor (D‐A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than ~80% of incident photons with energies above the polymer's band gap. If the thickness of these devices could be increased without sacrificing internal quantum efficiency, the device power conversion efficiency (PCE) could be significantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐octylthieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) with 7.3% PCE and find that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge‐carrier recombination and limit device quantum efficiency. These findings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum efficiency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells.  相似文献   

4.
Significantly increased power conversion efficiency (PCE) of polymer solar cells (PSCs) is achieved by applying a plasmonic enhanced light trapping strategy to a low bandgap conjugated polymer, poly(indacenodithiophene‐ co‐phananthrene‐quinoxaline) (PIDT‐PhanQ) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) based bulk‐heterojunction (BHJ) system. By doping both the rear and front charge‐selecting interfacial layers of the device with different sizes of Au NPs, the PCE of the devices is improved from 6.65% to 7.50% (13% enhancement). A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of low bandgap polymers in PSCs.  相似文献   

5.
Designing polymers that facilitate exciton dissociation and charge transport is critical for the production of highly efficient all‐polymer solar cells (all‐PSCs). Here, the development of a new class of high‐performance naphthalenediimide (NDI)‐based polymers with large dipole moment change (Δµge) and delocalized lowest unoccupied molecular orbital (LUMO) as electron acceptors for all‐PSCs is reported. A series of NDI‐based copolymers incorporating electron‐withdrawing cyanovinylene groups into the backbone (PNDITCVT‐R) is designed and synthesized with 2‐hexyldecyl (R = HD) and 2‐octyldodecyl (R = OD) side chains. Density functional theory calculations reveal an enhancement in Δµge and delocalization of the LUMO upon the incorporation of cyanovinylene groups. All‐PSCs fabricated from these new NDI‐based polymer acceptors exhibit outstanding power conversion efficiencies (7.4%) and high fill factors (65%), which is attributed to efficient exciton dissociation, well‐balanced charge transport, and suppressed monomolecular recombination. Morphological studies by grazing X‐ray scattering and resonant soft X‐ray scattering measurements show the blend films containing polymer donor and PNDITCVT‐R acceptors to exhibit favorable face‐on orientation and well‐mixed morphology with small domain spacing (30–40 nm).  相似文献   

6.
The interplay between nanomorphology and efficiency of polymer‐fullerene bulk‐heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small‐molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2‐b:4,5‐b]dithiophene‐pyrido[3,4‐b]‐pyrazine BDT(PPTh2)2, namely SM1 and SM2, differing by their side‐chains, are examined as a function of solution additive composition. The results show that the additive 1,8‐diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM‐based BHJ solar cells compared with polymer‐fullerene devices. In polymer‐based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM‐based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.  相似文献   

7.
Reaching device efficiencies that can rival those of polymer‐fullerene Bulk Heterojunction (BHJ) solar cells (>10%) remains challenging with the “All‐Small‐Molecule” (All‐SM) approach, in part because of (i) the morphological limitations that prevail in the absence of polymer and (ii) the difficulty to raise and balance out carrier mobilities across the active layer. In this report, the authors show that blends of the SM donor DR3TBDTT (DR3) and the nonfullerene SM acceptor O‐IDTBR are conducive to “All‐SM” BHJ solar cells with high open‐circuit voltages (VOC) >1.1 V and PCEs as high as 6.4% (avg. 6.1%) when the active layers are subjected to a post‐processing solvent vapor‐annealing (SVA) step with dimethyl disulfide (DMDS). Combining electron energy loss spectroscopy (EELS) analyses and systematic carrier recombination examinations, the authors show that SVA treatments with DMDS play a determining role in improving charge transport and reducing non‐geminate recombination for the DR3:O‐IDTBR system. Correlating the experimental results and device simulations, it is found that substantially higher BHJ solar cell efficiencies of >12% can be achieved if the IQE and carrier mobilities of the active layer are increased to >85% and >10?4 cm2 V?1 s?1, respectively, while suppressing the recombination rate constant k to <10?12 cm3 s?1.  相似文献   

8.
All‐polymer solar cells (all‐PSCs) utilizing p‐type polymers as electron‐donors and n ‐typepolymers as electron‐acceptors have attracted a great deal of attention, and their efficiencies have been improved considerably. Here, five polymer donors with different molecular orientations are synthesized by random copolymerization of 5‐fluoro‐2,1,3‐benzothiadiazole with different relative amounts of 2,2′‐bithiophene (2T) and dithieno[3,2‐b;2′,3′‐d]thiophene (DTT). Solar cells are prepared by blending the polymer donors with a naphthalene diimide‐based polymer acceptor (PNDI) or a [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) acceptor and their morphologies and crystallinity as well as optoelectronic, charge‐transport and photovoltaic properties are studied. Interestingly, charge generation in the solar cells is found to show higher dependence on the crystal orientation of the donor polymer for the PNDI‐based all‐PSCs than for the conventional PC71BM‐based PSCs. As the population of face‐on‐oriented crystallites of the donor increased in PNDI‐based PSC, the short‐circuit current density (JSC) and external quantum efficiency of the devices are found to significantly improve. Consequently, device efficiency was enhanced of all‐PSC from 3.11% to 6.01%. The study reveals that producing the same crystal orientation between the polymer donor and acceptor (face‐on/face‐on) is important in all‐PSCs because they provide efficient charge transfer at the donor/acceptor interface.  相似文献   

9.
Solution‐processable small molecule (SM) donors are promising alternatives to their polymer counterparts in bulk‐heterojunction (BHJ) solar cells. While SM donors with favorable spectral absorption, self‐assembly patterns, optimum thin‐film morphologies, and high carrier mobilities in optimized donor–acceptor blends are required to further BHJ device efficiencies, material structure governs each one of those attributes. As a result, the rational design of SM donors with gradually improved BHJ solar cell efficiencies must concurrently address: (i) bandgap tuning and optimization of spectral absorption (inherent to the SM main chain) and (ii) pendant‐group substitution promoting structural order and mediating morphological effects. In this paper, the rational pendant‐group substitution in benzo[1,2‐b:4,5‐b′]dithiophene–6,7‐difluoroquinoxaline SMs is shown to be an effective approach to narrowing the optical gap (Eopt) of the SM donors ( SM1 and SM2 ), without altering their propensity to order and form favorable thin‐film BHJ morphologies with PC71BM. Systematic device examinations show that power conversion efficiencies >8% and open‐circuit voltages (VOC) nearing 1 V can be achieved with the narrow‐gap SM donor analog ( SM2 , Eopt = 1.6 eV) and that charge transport in optimized BHJ solar cells proceeds with minimal, nearly trap‐free recombination. Detailed device simulations, light intensity dependence, and transient photocurrent analyses emphasize how carrier recombination impacts BHJ device performance upon optimization of active layer thickness and morphology.  相似文献   

10.
Environmental friendly aqueous‐processed solar cells have become one of the most promising candidates for the next‐generation photovoltaic devices. Researchers have made lots of progress in designing active materials with novel structures, manipulating the defects in active materials, optimizing device architecture, etc. However, it has long been a challenge to control the width of the depletion region and enhance carrier extraction ability. Fabrication of a thick bulk heterojunction (BHJ) film is an effective strategy to address these issues but difficult to realize. Herein, the thicker BHJ film of ZnO:CdTe is successfully fabricated and incorporated into CdTe‐poly(p‐phenylenevinylene) hybrid solar cells. As expected, this BHJ film enhances light absorption, extends the width of the depletion region, prolongs carrier lifetime, and promotes carrier extraction ability. Moreover, the electron transport layer of sol–gel ZnO with excellent transmittance and electrical conductivity boosts electron generation, transport, and injection, which further improves the device performance. As a result, the highest short current density (Jsc) of 19.5 mA cm?2, power conversion efficiency of 6.51%, and the widest depletion region (177 nm) are obtained in aqueous‐processed hybrid solar cells.  相似文献   

11.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

12.
To increase the efficiency of bulk heterojunction (BHJ) solar cells beyond 15%, 300 nm thick devices with 0.8 fill factor (FF) and external quantum efficiency (EQE) >90% are likely needed. This work demonstrates that numerical device simulators are a powerful tool for investigating charge‐carrier transport in BHJ devices and are useful for rapidly determining what semiconductor pro­perties are needed to reach these performance milestones. The electron and hole mobility in a BHJ must be ≈10?2 cm2 V?1 s?1 in order to attain a 0.8 FF in a 300 nm thick device with the recombination rate constant of poly(3‐hexyl­thiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM). Thus, the hole mobility of donor polymers needs to increase from ≈10?4 to ≈10?2 cm2 V?1 s?1 in order to significantly improve device performance. Furthermore, the charge‐carrier mobility required for high FF is directly proportional to the BHJ recombination rate constant, which demonstrates that decreasing the recombination rate constant could dramatically improve the efficiency of optically thick devices. These findings suggest that researchers should prioritize improving charge‐carrier mobility when synthesizing new materials for BHJ solar cells and highlight that they should aim to understand what factors affect the recombination rate constant in these devices.  相似文献   

13.
For the commercial development of organic photovoltaics (OPVs), laboratory‐scale OPV technology must be translated to large area modules. In particular, it is important to develop high‐efficiency polymers that can form thick (>100 nm) bulk heterojunction (BHJ) films over large areas with optimal morphologies for charge generation and transport. Here, D1‐A‐D2‐A random terpolymers composed of 2,2′‐bithiophene with various proportions of 5,6‐difluoro‐4,7‐bis(thiophen‐2‐yl)‐2,1,3‐benzothiadiazole and 5,6‐difluoro‐2,1,3‐benzothiadiazole (FBT) are synthesized. It is found that incorporating small proportions of FBT into the polymer not only conserves the high crystallinity and favorable face‐on orientation of the D‐A copolymer FBT‐Th4 but also improves the nanoscale phase separation of the BHJ film. Consequently, the random terpolymer PDT2fBT‐BT10 exhibits a much improved solar cell efficiency of 10.31% when compared to that of the copolymer FBT‐Th4 (8.62%). Moreover, due to this polymer's excellent processability and suppressed overaggregation, OPVs with 1 cm2 active area based on 351 nm thick PDT2fBT‐BT10 BHJs exhibit high photovoltaic performance of 9.42%, whereas rapid efficiency decreases arise for FBT‐Th4‐based OPVs for film thicknesses above 300 nm. It is demonstrated that this random terpolymer can be used in large area and thick BHJ OPVs, and guidelines for developing polymers that are suitable for large‐scale printing technologies are presented.  相似文献   

14.
Nonfullerene polymer solar cells (PSCs) are fabricated by using one wide bandgap donor PBDB‐T and one ultranarrow bandgap acceptor IEICO‐4F as the active layers. One medium bandgap donor PTB7‐Th is selected as the third component due to the similar highest occupied molecular orbital level compared to that of PBDB‐T and their complementary absorption spectra. The champion power conversion efficiency (PCE) of PSCs is increased from 10.25% to 11.62% via incorporating 20 wt% PTB7‐Th in donors, with enhanced short‐circuit current (JSC) of 24.14 mA cm?2 and fill factor (FF) of 65.03%. The 11.62% PCE should be the highest value for ternary nonfullerene PSCs. The main contribution of PTB7‐Th can be summarized as the improved photon harvesting and enhanced exciton utilization of PBDB‐T due to the efficient energy transfer from PBDB‐T to PTB7‐Th. Meanwhile, PTB7‐Th can also act as a regulator to adjust PBDB‐T molecular arrangement for optimizing charge transport, resulting in the enhanced FF of ternary PSCs. This experimental result may provide new insight for developing high‐performance ternary nonfullerene PSCs by selecting two well‐compatible donors with different bandgap and one ultranarrow bandgap acceptor.  相似文献   

15.
Atomically thin 2D heterostructures have opened new realms in electronic and optoelectronic devices. Herein, 2D lateral heterostructures of mesoporous In2O3–x/In2S3 atomic layers are synthesized through the in situ oxidation of In2S3 atomic layers by an oxygen plasma‐induced strategy. Based on experimental observations and theoretical calculations, the prolonged charge carrier lifetime and increased electron density reveal the efficient photoexcited carrier transport and separation in the In2O3–x/In2S3 layers by interfacial bonding at the atomic level. As expected, the synergistic structural and electronic modulations of the In2O3–x/In2S3 layers generate a photocurrent of 1.28 mA cm?2 at 1.23 V versus a reversible hydrogen electrode, nearly 21 and 79 times higher than those of the In2S3 atomic layers and bulk counterpart, respectively. Due to the large surface area, abundant active sites, broadband‐light harvesting ability, and effective charge transport pathways, the In2O3–x/In2S3 layers build efficient pathways for photoexcited charge in the 2D semiconductive channels, expediting charge transport and kinetic processes and enhancing the robust broadband‐light photo‐electrochemical water splitting performance. This work paves new avenues for the exploration and design of atomically thin 2D lateral heterostructures toward robust photo‐electrochemical applications and solar energy utilization.  相似文献   

16.
While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all‐polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all‐polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4‐c ]pyrrole‐4,6‐dione (TPD) and 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low‐bandgap polymer donor commonly used with fullerenes (PBDT‐TS1; taken as a model system). In this material set, the introduction of a third electron‐deficient motif, namely 2,1,3‐benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (E opt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow‐gap P2TPDBT[2F]T analog (E opt = 1.7 eV) used as fullerene alternative yields high open‐circuit voltages (V OC) of ≈1.0 V, notable short‐circuit current values (J SC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all‐polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.  相似文献   

17.
By application of thermal annealing and UV ozone simultaneously, a solution‐processed NiOx film can achieve a work function of approximately –5.1 eV at a temperature below 150 °C, which allows the processing of NiOx that is compatible with fabrication of polymer solar cells (PSCs) on plastic substrates. The low processing temperature, which is greatly reduced from 250–400 °C to 150 °C, is attributed to the high concentration of NiOOH species on the film surface. This concentration will result in a large surface dipole and lead to increased work function. The pretreated NiOx is demonstrated to be an efficient buffer layer in PSCs based on polymers with different highest occupied molecular orbital energy levels. Compared with conventional poly(3,4‐ethylenedioxy‐thiophene):poly(styrenesulfonate)‐buffered PSCs, the NiOx‐buffered PSCs achieve similar or improved device performance as well as enhanced device stability.  相似文献   

18.
19.
Charge transport layers play an important role in determining the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, it has proven challenging to produce thin and compact charge transport layers via solution processing techniques. Herein, a hot substrate deposition method capable of improving the morphology of high‐coverage hole‐transport layers (HTLs) and electron‐transport layers (ETLs) is reported. PSC devices using HTLs deposited on a hot substrate show improvement in the open‐circuit voltage (Voc) from 1.041 to 1.070 V and the PCE from 17.00% to 18.01%. The overall device performance is then further enhanced with the hot substrate deposition of ETLs as the Voc and PCE reach 1.105 V and 19.16%, respectively. The improved performance can be explained by the decreased current leakage and series resistance, which are present in PSCs with rough and discontinuous HTLs and ETLs.  相似文献   

20.
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号