首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite many promising reports of plasmon‐enhanced photocatalysis, the inability to identify the individual contributions from multiple enhancement mechanisms has delayed the development of general design rules for engineering efficient plasmonic photocatalysts. Herein, a plasmonic photocathode comprised of Au@SiO2 (core@shell) nanoparticles embedded within a Cu2O nanowire network is constructed to exclusively examine the contribution from one such mechanism: electromagnetic near‐field enhancement. The influence of the local electromagnetic field intensity is correlated with the overall light‐harvesting efficiency of the device through variation of the SiO2 shell thickness (5–22 nm) to systematically tailor the distance between the plasmonic Au nanoparticles and the Cu2O nanowires. A threefold increase in device photocurrent is achieved upon integrating the Au@SiO2 nanoparticles into the Cu2O nanowire network, further enabling a 40% reduction in semiconductor film thickness while maintaining photocathode performance. Photoelectrochemical results are further correlated with photoluminescence studies and optical simulations to confirm that the near‐field enhancement is the sole mechanism responsible for increased light absorption in the plasmonic photocathode.  相似文献   

2.
Zeolitic imidazolate framework‐8 (ZIF‐8) loading rhodamine‐B (ZIF‐8@rhodamine‐B) nanocomposites was proposed and used as ratiometric fluorescent sensor to detect copper(II) ion (Cu2+). Scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray powder diffraction, nitrogen adsorption/desorption isotherms and fluorescence emission spectroscopy were employed to characterize the ZIF‐8@rhodamine‐B nanocomposites. The results showed the rhodamine‐B was successfully assembled on ZIF‐8 based on the π‐π interaction and the hydrogen bond between the nitrogen atom of ZIF‐8 and –COOH of rhodamine‐B. The as‐obtained ZIF‐8@rhodamine‐B nanocomposites were octahedron with size about 150–200 nm, had good water dispersion, and exhibited the characteristic fluorescence emission of ZIF‐8 at 335 nm and rhodamine‐B at 575 nm. The Cu2+ could quench fluorescence of ZIF‐8 rather than rhodamine‐B. The ZIF‐8 not only acted as the template to assemble rhodamine‐B, but also was employed as the signal fluorescence together with the fluorescence of rhodamine‐B as the reference to construct a novel ratiometric fluorescent sensor to detect Cu2+. The resulted ZIF‐8@rhodamine‐B nanocomposite fluorescence probe showed good linear range (68.4 nM to 125 μM) with a low detection limit (22.8 nM) for Cu2+ combined with good sensitivity and selectivity. The work also provides a better way to design ratiometric fluorescent sensors from ZIF‐8 and other fluorescent molecules.  相似文献   

3.
Heavy metal pumps constitute a large subgroup in P‐type ion‐transporting ATPases. One of the outstanding features is that the nucleotide binding N‐domain lacks residues critical for ATP binding in other well‐studied P‐type ATPases. Instead, they possess an HP‐motif and a Gly‐rich sequence in the N‐domain, and their mutations impair ATP binding. Here, we describe 1.85 Å resolution crystal structures of the P‐ and N‐domains of CopA, an archaeal Cu+‐transporting ATPase, with bound nucleotides. These crystal structures show that CopA recognises the adenine ring completely differently from other P‐type ATPases. The crystal structure of the His462Gln mutant, in the HP‐motif, a disease‐causing mutation in human Cu+‐ATPases, shows that the Gln side chain mimics the imidazole ring, but only partially, explaining the reduction in ATPase activity. These crystal structures lead us to propose a role of the His and a mechanism for removing Mg2+ from ATP before phosphoryl transfer.  相似文献   

4.
In previous studies, we have demonstrated that damaged neurons within a boundary area around necrosis fall into delayed cell death due to the cytotoxic effect of microglial nitric oxide (NO), and are finally eliminated by activated microglia. In contrast, neurons in a narrow surrounding region nearby this boundary area remain alive even though they may encounter cytotoxic NO. To investigate the mechanism by which neurons tolerate this oxidative stress, we examined the in vitro and in vivo expression levels of superoxide dismutase (SOD) under pathological conditions. Results from our in situ hybridization and immunohistochemical studies showed up‐regulation of Cu/Zn‐SOD only in neurons outside the boundary area, whereas up‐regulation of Mn‐SOD was detected in both neurons and glial cells in the same region. In vitro experiments using rat PC12 pheochromocytoma and C6 glioma cell lines showed that induction of both Cu/Zn‐ and Mn‐SOD mRNA could only be detected in PC12 cells after treatment with NO donors, while a slight induction of Mn‐SOD mRNA alone could be seen in C6 glioma cells. The mechanism of resistance toward oxidative stress therefore appears to be quite different between neuronal and glial cells. It is assumed that these two types of SOD might play a critical role in protecting neurons from NO cytotoxicity in vivo, and the inability of SOD induction in damaged neurons seems to cause their selective elimination after focal brain injury. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 39–46, 2000  相似文献   

5.
Metal–organic framework derived approaches are emerging as a viable way to design carbon‐confined transitional metal phosphides (TMPs@C) for energy storage and conversion. However, their preparation generally involves a phosphorization using a large amount of additional P sources, which inevitably releases flammable, poisonous PH3. Therefore, developing an efficient strategy for eco‐friendly synthesis of TMPs@C is full of challenges. Here, a metal–organophosphine framework (MOPF) derived strategy is developed to allow an eco‐friendly design of TMPs@C without an additional P source, avoiding release of PH3. To illustrate this strategy, 1,3,5‐triaza‐7‐phosphaadamantane (PTA) ligands and Cu(NO3)2 metal centers are employed to construct Cu/PTA‐MOPFs nanosheets. Cu/PTA‐MOPFs can be directly converted to carbon‐confined Cu3P nanoparticles by annealing. Benefiting from high heteroatom content in PTA, a high doping content of 3.92 at% N and 8.26 at% P can also be achieved in the carbon matrix. As a proof‐of‐concept application, N,P‐codoped carbon‐confined Cu3P nanoparticles as anodes for Na‐ion storage exhibit a high initial reversible capacity of 332 mA h g?1 at 50 mA g?1, and superb rate and cyclic performance. Due to rich coordination modes of organophosphine, MOPFs are expected to become a promising molecular platform for design of various heteroatom‐doped TMPs@C for energy storage and conversion.  相似文献   

6.
7.
The development of solution‐processable routes to prepare efficient photoelectrodes for water splitting is highly desirable to reduce manufacturing costs. Recently, sulfide chalcopyrites (Cu(In,Ga)S2) have attracted attention as photocathodes for hydrogen evolution owing to their outstanding optoelectronic properties and their band gap—wider than their selenide counterparts—which can potentially increase the attainable photovoltage. A straightforward and all‐solution‐processable approach for the fabrication of highly efficient photocathodes based on Cu(In,Ga)S2 is reported for the first time. It is demonstrated that semiconductor nanocrystals can be successfully employed as building blocks to prepare phase‐pure microcrystalline thin films by incorporating different additives (Sb, Bi, Mg) that promote the coalescence of the nanocrystals during annealing. Importantly, the grain size is directly correlated to improved charge transport for Sb and Bi additives, but it is shown that secondary effects can be detrimental to performance even with large grains (for Mg). For optimized electrodes, the sequential deposition of thin layers of n‐type CdS and TiO2 by solution‐based methods, and platinum as an electrocatalyst, leads to stable photocurrents saturating at 8.0 mA cm–2 and onsetting at ≈0.6 V versus RHE under AM 1.5G illumination for CuInS2 films. Electrodes prepared by our method rival the state‐of‐the‐art performance for these materials.  相似文献   

8.
Rational synthesis of hybrid, earth‐abundant materials with efficient electrocatalytic functionalities are critical for sustainable energy applications. Copper is theoretically proposed to exhibit high reduction capability close to Pt, but its high diffusion behavior at elevated fabrication temperatures limits its homogeneous incorporation with carbon. Here, a Cu, Co‐embedded nitrogen‐enriched mesoporous carbon framework (CuCo@NC) is developed using, a facile Cu‐confined thermal conversion strategy of zeolitic imidazolate frameworks (ZIF‐67) pre‐grown on Cu(OH)2 nanowires. Cu ions formed below 450 °C are homogeneously confined within the pores of ZIF‐67 to avoid self‐aggregation, while the existence of Cu? N bonds further increases the nitrogen content in carbon frameworks derived from ZIF‐67 at higher pyrolysis temperatures. This CuCo@NC electrocatalyst provides abundant active sites, high nitrogen doping, strong synergetic coupling, and improved mass transfer, thus significantly boosting electrocatalytic performances in oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). A high half‐wave potential (0.884 V vs reversible hydrogen potential, RHE) and a large diffusion‐limited current density are achieved for ORR, comparable to or exceeding the best reported earth‐abundant ORR electrocatalysts. In addition, a low overpotential (145 mV vs RHE) at 10 mA cm?2 is demonstrated for HER, further suggesting its great potential as an efficient electrocatalyst for sustainable energy applications.  相似文献   

9.
Earth‐abundant Cu2BaSnS4 (CBTS) thin films exhibit a wide bandgap of 2.04–2.07 eV, a high absorption coefficient > 104 cm?1, and a p‐type conductivity, suitable as a top‐cell absorber in tandem solar cell devices. In this work, sputtered oxygenated CdS (CdS:O) buffer layers are demonstrated to create a good p–n diode with CBTS and enable high open‐circuit voltages of 0.9–1.1 V by minimizing interface recombination. The best power conversion efficiency of 2.03% is reached under AM 1.5G illumination based on the configuration of fluorine‐doped SnO2 (back contact)/CBTS/CdS:O/CdS/ZnO/aluminum‐doped ZnO (front contact).  相似文献   

10.
A new 2,5‐diphenyl‐1,3,4‐oxadiazole‐based derivative (L) was synthesized and applied as a highly selective and sensitive fluorescent sensor for relay recognition of Cu2+ and S2? in water (Tris–HCl 10 mM, pH = 7.0) solution. L exhibits an excellent selectivity to Cu2+ over other examined metal ions with a prominent fluorescence ‘turn‐off’ at 392 nm. L interacts with Cu2+ through a 1:2 binding stoichiometry with a detection limit of 4.8 × 10–7 M. The on‐site formed L–2Cu2+ complex exhibits excellent selectivity to S2? with a fluorescence ‘off–on’ response via a Cu2+ displacement approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The Cu2+‐imprinted cross‐linked chitosan resin was synthesized and the binding characteristic of the resin to Cu2+ was evaluated. The prepared resin was packed into a micro‐glass column and used as micro‐separating column. The micro‐separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol–hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu2+ in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Cu(I) dicoordination with thiolate ligands is not common. Yet, different from its homologue proteins, human copper chaperone is known to bind Cu(I) using this low coordination number while binding Cu(I) only via the two conserved Cysteine residues, Cys12 and Cys15. Based on structural analysis, this work determines that the protein possesses two distinct conformations referred to as “in” and “out” due to the relative positioning of Cys12 (one of Cu(I) binding residues). The “out” conformation, with Cys12 pointing out, imposes a buried Cu(I) position, whereas the “in” conformation with Cys12 pointing inwards results in a more exposed Cu(I) thus, available for transfer. Using QM/MM methods along with thermodynamic cycles these two conformations are shown to exhibit different coordination preference, suggesting that the protein has evolved to have a unique Cu(I) protection mechanism. It is proposed that the “out” conformation with a preference to dicoordination prevents Cu(I) interaction with external ligands and/or Cu(I) release to the solvent, whereas the “in” conformation with preference to tricoordinated Cu(I), facilitates Cu(I) transfer to target proteins, where additional ligands are involved. Proteins 2013; 81:1411–1419. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
AA‐NADase from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase activities. Among all identified NADases, only AA‐NADase contains Cu(II) and has disulfide‐bond linkages between two peptide chains. The effects of the reduction of the disulfide‐bonds and Cu(II) in AA‐NADase by small‐molecule reductants on its NADase and ADPase activities have been investigated by polyacrylamide gel electrophoresis, high performance liquid chromatography, electron paramagnetic resonance spectroscopy and isothermal titration calorimetry. The results show that AA‐NADase has six disulfide‐bonds and fifteen free cysteine residues. L‐ascorbate inhibits AA‐NADase on both NADase and ADPase activities through the reduction of Cu(II) in AA‐NADase to Cu(I), while other reductants, dithiothreitol, glutathione and tris(2‐carboxyethyl)phosphine inhibit both NADase and ADPase activities through the reduction of Cu(II) to Cu(I) and the cleavage of disulfide‐bonds in AA‐NADase. Apo‐AA‐NADase can recover its NADase and ADPase activities in the presence of 1 mM Zn(II). However, apo‐AA‐NADase does not recover any NADase or ADPase activity in the presence of 1 mM Zn(II) and 2 mM TCEP. The multicatalytic activity relies on both disulfide‐bonds and Cu(II), while Cu(I) can not activate the enzyme activities. AA‐NADase is probably only active as a dimer. The inhibition curves for both ADPase and NADase activities by each reductant share a similar trend, suggesting both ADPase and NADase activities probably occur at the same site. In addition, we also find that glutathione and L‐ascorbate are endogenous inhibitors to the multicatalytic activity of AA‐NADase. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 141–149, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
Utilization of photons of sub‐bandgap energy, mostly near‐infrared (NIR) photo­ns, is highly desirable for photovoltaic devices. We show that (NaYF4:Yb‐Tm)/(Cu2O) composite films formed by electrodeposition exhibit robust photoactive current generation under NIR light excitation. The composite films consist of homogeneous crystalline particles of the fluoride and Cu2O in sub‐micrometer size. From spectroscopic characterization, it is found that the NaYF4:Yb‐Tm layer in the composite film converts NIR radiation by up‐conversion into visible emission, which is efficiently absorbed by the covering semiconducting Cu2O film, producing photoelectrons. Accordingly, the composite films exhibit highly photoactive current generation by means of a photoelectrochemical process driven by NIR irradiation. The methodology demonstrated here may have certain implications for the utilization of NIR radiation in solar cells, photocatalysts, and infrared photodetectors.  相似文献   

15.
A structurally simple molecular 1,10‐phenanthroline‐Cu complex on a mesostructured graphene matrix that can be active and selective toward CO2 reduction over H2 evolution in an aqueous solution is reported. The active sites consist of Cu(I) center in a distorted trigonal bipyramidal geometry, which enables the adsorption of CO2 with η1‐COO‐like configuration to commence the catalysis, with a turnover frequency of ≈45 s?1 at ?1 V versus reversible hydrogen electrode. Using in situ infrared spectroelectrochemical investigation, it is demonstrated that the Cu complex can be reversibly heterogenized near the graphene surface via potential control. An increase of electron density in the complex is observed as a result of the interaction from the electric field, which further tunes the electron distribution in the neighboring CO2. It is also found that the mesostructure of graphene matrix favored CO2 reduction on the Cu center over hydrogen evolution by limiting mass transport from the bulk solution to the electrode surface.  相似文献   

16.
A new rhodamine derivative, rhodamine B 4‐N,N‐dimethylaminobenzaldehyde hydrazone (1), was designed for ratiometric sensing of Cu(II) selectively. A red‐shift from 515 to 585 nm was observed in the fluorescence spectrum when Cu(II) was added to 1 in acetonitrile. Other metal ions of interest showed no ratiometric response. The interaction between Cu(II) and 1 was found to be the Cu(II)‐induced oxidation of 1. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Kesterite‐type Cu2ZnSn(S,Se)4 has been extensively studied over the past several years, with researchers searching for promising candidates for indium‐ and gallium‐free inexpensive absorbers in high‐efficiency thin‐film solar cells. Many notable experimental and theoretical studies have dealt with the effects of intrinsic point defects, Cu/Zn/Sn nonstoichiometry, and cation impurities on cell performance. However, there have been few systematic investigations elucidating the distribution of oxygen at an atomic scale and the correlation between oxygen substitution and charge transport despite unavoidable incorporation of oxygen from the ambient atmosphere during thin‐film fabrication. Using energy‐dispersive X‐ray spectroscopy, scanning transmission electron microscopy, and electron energy‐loss spectroscopy, the presence of nanoscale layers is directly demonstrated in which oxygen is substantially substituted for Se, near grain boundaries in polycrystalline Cu2ZnSnSe4 films. Density‐functional theory calculations also show that oxygen substitution remarkably lowers the valence band maximum and subsequently widens the overall bandgap. Consequently, anion modification by oxygen can make a major contribution to the formation of a robust barrier blocking the holes from bulk grains into grain boundaries, thereby efficiently attaining electron?hole separation. The findings provide crucial insights into achieving better energy conversion efficiency in kesterite‐based thin‐film solar cells through optimum control of oxidation during the fabrication process.  相似文献   

18.
In the liver, the P‐type ATPase and membrane pump ATP7B plays a crucial role in Cu+ donation to cuproenzymes and in the elimination of excess Cu+. ATP7B is endowed with a COOH‐cytoplasmic (DE)XXXLL‐type traffic signal. We find that accessory (Lys ?3, Trp ?2, Ser ?1 and Leu +2) and canonical (D ?4, Leu 0 and Leu +1) residues confer the DKWSLLL signal with the versatility required for the Cu+‐regulated cycling of ATP7B between the trans‐Golgi network (TGN) and the plasma membrane (PM). The separate mutation of these residues caused a disruption of the signal, resulting in different ATP7B distribution phenotypes. These phenotypes indicate the key roles of specific residues at separate steps of ATP7B trafficking, including sorting at the TGN, transport from the TGN to the PM and its endocytosis, and recycling to the TGN and PM. The distinct roles of ATP7B in the TGN and PM and the variety of phenotypes caused by the mutation of the canonical and accessory residues of the DKWSLLL signal can explain the separate or joined presentation of Wilson's cuprotoxicosis and the dysfunction of the cuproenzymes that accept Cu+ at the TGN.   相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号