首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sustainable energy production at an acceptable cost is key for its widespread application. At present, noble metals and metal oxides are the most widely used for electrocatalysis, but they suffer from low selectivity, poor durability, and scarcity. Because of this, metal‐free carbons have become the subject of great interest as promising alternative electrocatalysts for energy conversion and storage devices, and remarkable progress has been accomplished in the advance of metal‐free carbons as electrocatalysts for renewable energy technologies. Particularly interesting are 3D porous carbon architectures, which exhibit outstanding features for electrocatalysis applications, including broad range of active sites, interconnected porosity, high conductivity, and mechanical stability. This review summarizes the latest advances in 3D porous carbon structures for oxygen and hydrogen electrocatalysis. The structure–performance relationship of these materials is consequently rationalized and perspectives on creating more efficient 3D carbon electrocatalysts are suggested.  相似文献   

2.
Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intense study for their applications in various hydrogen production techniques. MOF‐based materials possess unique advantages, such as high specific surface area, crystalline porous structure, diverse and tunable chemical components, which offer attractive functionalities in catalyzing hydrogen evolution processes, by lowering reaction potentials, and speeding up reaction rates. Considering the rapid increase in research interest in hydrogen evolution in the last several years, this review aims to summarize recent advances in MOF‐associated hydrogen evolution research, including electrocatalytic, photocatalytic, and chemocatalytic HER. Particular attention is paid to the design and utilization of postsynthetic modification of MOFs, MOF‐supported catalysts, and MOF derivatives for highly efficient HER. The opportunities and challenges for MOF‐based materials in a hydrogen‐powered clean future are also discussed.  相似文献   

3.
4.
Transition metal phosphide catalysts have recently emerged as active, earth abundant alternatives to precious metals for the hydrogen evolution reaction in acid. High performance, scalable catalysts are necessary for the successful implementation of photoelectrochemical water splitting devices, which have the potential to generate hydrogen in a sustainable manner. Herein, a general synthetic route is reported to produce transition metal phosphide thin films, which is used to fabricate cobalt phosphide (CoP) catalysts with high average turnover frequency (TOFavg), 0.48 H2 s?1 and 1.0 H2 s?1 at 100 and 120 mV overpotential, respectively. Furthermore, it is shown that CoP thin films can be applied to silicon photoabsorbers to generate one of the most active precious metal‐free crystalline silicon photocathodes to date, achieving ?10 mA cm?2 at +0.345 V vs. reversible hydrogen electrode. The synthesis route presented here provides a platform for both fundamental studies of well‐defined electrocatalysts and the fabrication of high‐performance photoelectrodes.  相似文献   

5.
Metallic 1T MoS2 is highly desirable for catalyzing electrochemical hydrogen production from water owing to its high electrical conductivity. However, stable 1T MoS2 is difficult to be produced in large‐scale by either common chemical or physical approaches. Here, ultrastable in‐plane 1T–2H MoS2 heterostructures are achieved via a simple one‐pot annealing treatment of 2H MoS2 bulk under a mixture gas of Ar and phosphorous vapor, where phosphorus cannot only occupy the interspace of MoS2 bulk, resulting in the expansion of MoS2, but also embed into the lattice of MoS2, inducing the partial phase transition from 2H to 1T phases of MoS2. Benefiting from its significantly improved electrical conductivity, highly exposed active sites, and hydrophily property, in‐plane 1T–2H MoS2 heterostructures exhibit largely improved electrocatalytic properties for hydrogen evolution reaction (HER) in alkaline electrolytes.  相似文献   

6.
Constructing well defined nanostructures is promising but still challenging for high‐efficiency catalysts for hydrogen evolution reaction (HER) and energy storage. Herein, utilizing the differences in surface energies between (111) facets of CoP and NiCoP, a novel CoP/NiCoP heterojunction is designed and synthesized with a nanotadpoles (NTs)‐like morphology via a solid‐state phase transformation strategy. By effective interface construction, the disorder in terms of electronic structure and coordination environment at the interface in CoP/NiCoP NTs is created, which leads to dramatically elevated HER performance within a wide pH range. Theoretical calculations prove that an optimized proton chemisorption and H2O dissociation are achieved by an optimized phosphide polymorph at the interface, accelerating the HER reaction. The CoP/NiCoP NTs are also proved to be excellent candidates for use in supercapacitors (SCs) with a high specific capacitance (1106.2 F g?1 at 1 A g?1) and good cycling stability (nearly 100% initial capacity retention after 1000 cycles). An asymmetric supercapacitor shows a high energy density (145 F g?1 at 1 A g?1) and good cycling stability (capacitance retention is 95% after 3200 cycles). This work provides new insights into the catalyst design for electrocatalytic and energy storage applications.  相似文献   

7.
It is demonstrated that amorphous cobalt boride (Co2B) prepared by the chemical reduction of CoCl2 using NaBH4 is an exceptionally efficient electrocatalyst for the oxygen evolution reaction (OER) in alkaline electrolytes and is simultaneously active for catalyzing the hydrogen evolution reaction (HER). The catalyst achieves a current density of 10 mA cm?2 at 1.61 V on an inert support and at 1.59 V when impregnated with nitrogen‐doped graphene. Stable performance is maintained at 10 mA cm?2 for at least 60 h. The optimized catalyst, Co2B annealed at 500 °C (Co2B‐500) evolves oxygen more efficiently than RuO2 and IrO2, and its performance matches the best cobalt‐based catalysts reported to date. Co2B is irreversibly oxidized at OER conditions to form a CoOOH surface layer. The active form of the catalyst is therefore represented as CoOOH/Co2B. EXAFS observations indicate that boron induces lattice strain in the crystal structure of the metal, which potentially diminishes the thermodynamic and kinetic barrier of the hydroxylation reaction, formation of the OOH* intermediate, a key limiting step in the OER.  相似文献   

8.
The hydrogen evolution reaction (HER) is a fundamental process that impacts several important clean energy technologies. Great efforts have been taken to identify alternative materials that could replace Pt for this reaction or that may present additional functional properties such as optical activity and advanced electronic properties. Herein, a comparative study of the HER activity for ultrathin films of MoTe2, MoSe2, and their solid solutions on highly oriented pyrolytic graphite is reported. Combining advanced characterization techniques and density functional theory calculations with electrochemical measurements, it is shown that the chemical activity of the scarcely reactive 2H phases can be boosted by the presence of metallic twin boundaries. These defects, which are thermodynamically stable and naturally present in Mo‐enriched MoTe2 and MoSe2, endow the basal plane of the 2H phase with a high chemical activity, which is comparable to the metastable 1T polymorph.  相似文献   

9.
Searching for highly efficient and cost‐effective electrocatalysts toward the hydrogen evolution reaction (HER) in alkaline electrolyte is highly desirable for the development of alkaline water splitting, but still remains a significant challenge. Herein, the rational design of Cr‐doped Co4N nanorod arrays grown on carbon cloth (Cr–Co4N/CC) that can efficiently catalyze the HER in alkaline media is reported. It displays outstanding performance, with the exceptionally small overpotential of 21 mV to obtain the current density of 10 mA cm?2 and good stability in 1.0 m KOH, which is even better than the commercial Pt/C electrocatalyst, and much lower than most of the reported transition metal nitride‐based and other non‐noble metal‐based electrocatalysts toward the alkaline HER. Density functional theory (DFT) calculations and experimental results reveal that the Cr atoms not only act as oxophilic sites for boosting water adsorption and dissociation, but also modulate the electronic structure of Co4N to endow optimized hydrogen binding abilities on Co atoms, thereby leading to accelerating both the alkaline Volmer and Heyrovsky reaction kinetics. In addition, this strategy can be extended to other metals (such as Mo, Mn, and Fe) doped Co4N electrocatalysts, thus may open up a new avenue for the rational design of highly efficient transition metal nitride‐based HER catalysts and beyond.  相似文献   

10.
Hydrogen evolution by means of electrocatalytic water‐splitting is pivotal for efficient and economical production of hydrogen, which relies on the development of inexpensive, highly active catalysts. In addition to sulfides, the search for non‐noble metal catalysts has been mainly directed at phosphides due to the superb activity of phosphides for hydrogen evolution reaction (HER) and their low‐cost considering the abundance of the non‐noble constituents of phosphides. Here, recent research focusing on phosphides is summarized based on their synthetic methodology. A comparative study of the catalytic activity of different phosphides towards HER is then conducted. The catalytic activity is evaluated by overpotentials at fixed current density, Tafel slope, turnover frequency, and the Gibbs free energy of hydrogen adsorption. Based on the methods discussed, perspectives for the various methods of phosphides synthesis are given, and the origins of the high activity and the role of phosphorus on the improved activity towards HER are discussed.  相似文献   

11.
The sustainable and scalable production of hydrogen through hydrogen evolution reaction (HER) and oxygen through oxygen evolution reaction (OER) in water splitting demands efficient and robust electrocatalysts. Currently, state‐of‐the‐art electrocatalysts of Pt and IrO2/RuO2 exhibit the benchmark catalytic activity toward HER and OER, respectively. However, expanding their practical application is hindered by their exorbitant price and scarcity. Therefore, the development of alternative effective electrocatalysts for water splitting is crucial. In the last few decades, substantial effort has been devoted to the development of alternative HER/OER and water splitting catalysts based on various transition metals (including Fe, Co, Ni, Mo, and atomic Pt) which show promising catalytic activities and durability. In this review, after a brief introduction and basic mechanism of HER/OER, the authors systematically discuss the recent progress in design, synthesis, and application of single atom and cluster‐based HER/OER and water splitting catalysts. Moreover, the crucial factors that can tune the activity of catalysts toward HER/OER and water splitting such as morphology, crystal defects, hybridization of metals with nonmetals, heteroatom doping, alloying, and formation of metals inside graphitic layered materials are discussed. Finally, the existing challenges and future perspectives for improving the performance of electrocatalysts for water splitting are addressed.  相似文献   

12.
The hydrogen evolution reaction (HER) on a noble metal surface in alkaline media is more sluggish than that in acidic media due to the limited proton supply. To promote the reaction, it is necessary to transform the alkaline HER mechanism via a multisite catalyst, which has additional water dissociation sites to improve the proton supply to an optimal level. Here, this study reports a top‐down strategy to create a multisite HER catalyst on a nano‐Pd surface and how to further fine‐tune the areal ratio of the water dissociation component to the noble metal surface in core/shell‐structured nanoparticles (NPs). Starting with Pd/Fe3O4 core/shell NPs, electrochemical cycling is used to tune the coverage of iron (oxy)hydroxide on a Pd surface. The alkaline HER activity of the core/sell Pd/FeOx (OH)2?2x NPs exhibits a volcano‐shaped correlation with the surface Fe species coverage. This indicates an optimum coverage level where the rates of both the water dissociation step and the hydrogen formation step are balanced to achieve the highest efficiency. This multisite strategy assigns multiple reaction steps to different catalytic sites, and should also be extendable to other core/shell NPs to optimize their HER activity in alkaline media.  相似文献   

13.
As a non‐toxic species, Zn fulfills a multitude of biological roles, but its promoting effect on electrocatalysis has been rarely explored. Herein, the theoretic predications and experimental investigations that nonelectroactive Zn behaves as an effective promoter for CoP‐catalyzed hydrogen evolution reaction (HER) in both acidic and alkaline media is reported. Density function theory calculations reveal that Zn doing leads to more thermal‐neutral hydrogen adsorption free energy and thus enhanced HER activity for CoP catalyst. Electrochemical tests show that a Zn0.08Co0.92P nanowall array on titanium mesh (Zn0.08Co0.92P/TM) needs overpotentials of only 39 and 67 mV to drive a geometrical catalytic current of 10 mA cm‐2 in 0.5 m H2SO4 and 1.0 m KOH, respectively. This Zn0.08Co0.92P/TM is also superior in activity over CoP/TM for urea oxidation reaction (UOR), driving 115 mA cm‐2 at 0.6 V in 1.0 m KOH with 0.5 m urea. The high HER and UOR activity of this bifunctional electrode enables a Zn0.08Co0.92P/TM‐based two‐electrode electrolyzer for energy‐saving hydrogen production, offering 10 mA cm‐2 at a low voltage of 1.38 V with strong long‐term electrochemical stability.  相似文献   

14.
An efficient, durable, and low‐cost hydrogen evolution reaction (HER) catalyst is an essential requirement for practical hydrogen production. Herein, an effective approach to facilitate the HER kinetics of molybdenum carbide (Mo2C) electrocatalysts is presented by tuning its electronic structure through atomic engineering of nitrogen implantation. Starting from the organoimido‐derivatized polyoxometalate nanoclusters with inherent Mo? N bonds, the formation of N‐implanted Mo2C (N@Mo2C) nanocrystals with perfectly adjustable amounts of N atoms is demonstrated. The optimized N@Mo2C electrocatalyst exhibits remarkable HER performance and good stability over 20 h in both acid and basic electrolytes. Further density functional theory calculations show that engineering suitable nitrogen atoms into Mo2C can regulate its electronic structure well and decrease Mo? H strength, leading to a great enhancement of the HER activity. It could be believed that this ligand‐controlled atomic engineering strategy might influence the overall catalyst design strategy for engineering the activation sites of nonprecious metal catalysts for energy conversions.  相似文献   

15.
16.
The advent of noble metal aerogels (NMAs), that feature the high catalytic activity of noble metals and unique structural attributes of aerogels, has stimulated research on a new class of outstanding electrocatalysts. However, limited by the available compositions, the explored electrocatalytic reactions on NMAs are highly restricted and certain important electrochemical processes have not been investigated. Here, an effective gelation approach is demonstrated by using a strong salting‐out agent (i.e., NH4F), thereby expanding the composition of NMAs to various multimetallic systems and providing a platform to investigate composition‐dependent electrocatalytic performance of NMAs. Combining structural features of aerogels and optimized chemical compositions, the Au–Pt and Au–Rh aerogel catalysts manifest remarkable pH‐universal (pH = 0–14) performance surpassing commercial Pt/C and many other nanoparticle (NP)‐based catalysts in the electrocatalytic oxygen reduction reaction, hydrogen evolution reaction, and water splitting, displaying enormous potential for the electrochemical hydrogen production, fuel cells, etc.  相似文献   

17.
For the first time, a 3D Prussian blue analogue (PBA) with well‐defined spatial organization is fabricated by using a nickel hydroxide array as a precursor. The nickel hydroxide arrays are synthesized in titanium foil and reacted with K3[Fe(CN)6]. The plate‐like morphology of the nickel hydroxide is perfectly preserved and combined with abundant PBA nanocubes. After phosphidation at 350 °C, the obtained sample demonstrated excellent hydrogen evolution reaction (HER) activity in both acid and alkaline solutions to reach a current density of 10 mA cm?2 with an overpotential of only 70 and 121 mV, respectively. With an overpotential of 266 mV, it can reach a larger current density of 500 mA cm?2 in acid. The efficient HER activity of the obtained sample is mainly ascribed to its structural advantage with various active metal sites derived from the nickel hydroxide and PBA precursor. In addition, long‐term stability measurements have verified the good performance of the obtained sample in acid and alkaline solutions. An increment of overpotential of only 8 and 9 mV is observed, in the acid and alkaline solutions respectively. Beyond these assets, it is supposed that the strategy to synthesize 3D PBA arrays from nickel hydroxide can be extended to other metal–organic frameworks arrays for more electrochemical applications.  相似文献   

18.
Solid‐state electrocatalysis plays a crucial role in the development of renewable energy to reshape current and future energy needs. However, finding an inexpensive and highly active catalyst to replace precious metals remains a big challenge for this technology. Here, tri‐molybdenum phosphide (Mo3P) is found as a promising nonprecious metal and earth‐abundant candidate with outstanding catalytic properties that can be used for electrocatalytic processes. The catalytic performance of Mo3P nanoparticles is tested in the hydrogen evolution reaction (HER). The results indicate an onset potential of as low as 21 mV, H2 formation rate, and exchange current density of 214.7 µmol s?1 g?1cat (at only 100 mV overpotential) and 279.07 µA cm?2, respectively, which are among the closest values yet observed to platinum. Combined atomic‐scale characterizations and computational studies confirm that high density of molybdenum (Mo) active sites at the surface with superior intrinsic electronic properties are mainly responsible for the remarkable HER performance. The density functional theory calculation results also confirm that the exceptional performance of Mo3P is due to neutral Gibbs free energy (ΔGH*) of the hydrogen (H) adsorption at above 1/2 monolayer (ML) coverage of the (110) surface, exceeding the performance of existing non‐noble metal catalysts for HER.  相似文献   

19.
A unique approach for the synthesis of nonstoichiometric, mesoporous molybdenum oxide (MoO3–x) with nanosized crystalline walls by using a soft template (PEO‐b‐PS) synthesis method is introduced. The as‐synthesized mesoporous MoO3–x is very active and stable (durability > 12 h) for the electrochemical hydrogen evolution reaction (HER) under both acidic and alkaline conditions. The intrinsic MoO3 serves as an HER electrocatalyst without the assistance of carbon materials, noble metals, or MoS2 materials. The results from transmission electron microscopy and N2 sorption techniques show that the as‐synthesized mesoporous MoO3–x has large accessible pores (20–40 nm), which are able to facilitate mass transport and charge transfer during HER. In terms of X‐ray diffraction, X‐ray photoelectron spectroscopy, temperature‐programmed oxidation, and diffusive reflectance UV–vis spectroscopy, the mesoporous MoO3–x exhibits mixed oxidation states (Mo5+, Mo6+) and an oxygen‐deficient structure. The as‐synthesized MoO3–x only requires a low overpotential (≈0.14 V) to achieve a 10 mA cm?2 current density in 0.1 m KOH and the Tafel slope is as low as 56 mV dec?1. Density functional theory calculations demonstrate a change of electronic structure and the possible reaction pathway of HER. Oxygen vacancies and mesoporosity serve as key factors for excellent performance.  相似文献   

20.
Hydrogen is one of the most important energy alternatives to conventional fossil-based fuel. Solar energy based photocatalytic hydrogen evolution (PHE) is a salient approach to produce hydrogen fuel but its efficiency is generally limited by the sluggish and energy-unfavorable oxidation reaction. Meanwhile, waste treatment has become a worldwide problem and clean treatment is highly demanded to avoid the vast greenhouse emission currently. Inspiringly, PHE can be effectively coupled with the favorable photooxidation of many wastes, which kills two birds with one stone. In this review, the recent progress in PHE coupled with waste treatment is presented, where typical solid, liquid, and gas wastes have been briefly discussed. Focusing on the understanding of complicated reaction mechanism and the revelation of oxidation products, the cutting-edge techniques for photophysics and surface chemistry characterization have been analyzed, which are imperative to facilitate the following investigation. Finally, the developing trend and existing issues in current research are also discussed in detail so that a holistic blueprint of PHE coupled with waste treatment can be portrayed to accelerate their application in a realistic world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号