首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The achievement of the superior rate capability and cycling stability is always the pursuit of sodium‐ion batteries (SIBs). However, it is mainly restricted by the sluggish reaction kinetics and large volume change of SIBs during the discharge/charge process. This study reports a facile and scalable strategy to fabricate hierarchical architectures where TiO2 nanotube clusters are coated with the composites of ultrafine MoO2 nanoparticles embedded in carbon matrix (TiO2@MoO2‐C), and demonstrates the superior electrochemical performance as the anode material for SIBs. The ultrafine MoO2 nanoparticles and the unique nanorod structure of TiO2@MoO2‐C help to decrease the Na+ diffusion length and to accommodate the accompanying volume expansion. The good integration of MoO2 nanoparticles into carbon matrix and the cable core role of TiO2 nanotube clusters enable the rapid electron transfer during discharge/charge process. Benefiting from these structure merits, the as‐made TiO2@MoO2‐C can deliver an excellent cycling stability up to 10 000 cycles even at a high current density of 10 A g?1. Additionally, it exhibits superior rate capacities of 110 and 76 mA h g?1 at high current densities of 10 and 20 A g?1, respectively, which is mainly attributed to the high capacitance contribution.  相似文献   

3.
The cathode materials in the Na‐ion battery system are always the key issue obstructing wider application because of their relatively low specific capacity and low energy density. A graphene oxide (GO) wrapped composite, Na2Fe2(SO4)3@C@GO, is fabricated via a simple freeze‐drying method. The as‐prepared material can deliver a 3.8 V platform with discharge capacity of 107.9 mAh g?1 at 0.1 C (1 C = 120 mA g?1) as well as offering capacity retention above 90% at a discharge rate of 0.2 C after 300 cycles. The well‐constructed carbon network provides fast electron transfer rates, and thus, higher power density also can be achieved (75.1 mAh g?1 at 10 C). The interface contribution of GO and Na2Fe2(SO4)3 is recognized and studied via density function theory calculation. The Na storage mechanism is also investigated through in situ synchrotron X‐ray diffraction, and pseudocapacitance contributions are also demonstrated. The diffusion coefficient of Na+ ions is around 10?12–10?10.8 cm2 s?1 during cycling. The higher working voltage of this composite is mainly ascribed to the larger electronegativity of the element S. The research indicates that this well‐constructed composite would be a competitive candidate as a cathode material for Na‐ion batteries.  相似文献   

4.
5.
Na3V2(PO4)3 (denoted as NVP) has been considered as a promising cathode material for room temperature sodium ion batteries. Nevertheless, NVP suffers from poor rate capability resulting from the low electronic conductivity. Here, the feasibility to approach high rate capability by designing carbon‐coated NVP nanoparticles confined into highly ordered mesoporous carbon CMK‐3 matrix (NVP@C@CMK‐3) is reported. The NVP@C@CMK‐3 is prepared by a simple nanocasting technique. The electrode exhibits superior rate capability and ultralong cyclability (78 mA h g?1 at 5 C after 2000 cycles) compared to carbon‐coated NVP and pure NVP cathode. The improved electrochemical performance is attributed to double carbon coating design that combines a variety of advantages: very short diffusion length of Na+/e? in NVP, easy access of electrolyte, and short transport path of Na+ through carbon toward the NVP nanoparticle, high conductivity transport of electrons through the 3D interconnected channels of carbon host. The optimum design of the core–shell nanostructures with double carbon coating permits fast kinetics for both transported Na+ ions and electrons, enabling high‐power performance.  相似文献   

6.
Sodium‐ion batteries (SIBs) are considered to be a promising alternative for large‐scale electricity storage. However, it is urgent to develop new anode materials with superior ultralong cycle life performance at high current rates. Herein, a low‐cost and large‐scalable sulfur‐doped carbon anode material that exhibits the best high‐rate cycle performance and the longest cycle life ever reported for carbon anodes is developed. The material delivers a reversible capacity of 142 mA h g?1 at a current rate up to 10 A g?1. After 10 000 cycles the capacity is remained at 126.5 mA h g?1; 89.1% of the initial value. Density functional theory computations demonstrate that the sulfur‐doped carbon has a strong binding affinity for sodium which promotes sodium storage. Meanwhile, the kinetics analysis identifies the capacitive charge storage as a large contributor to sodium storage, which favors ultrafast storage of sodium ions. These results demonstrate a new way to design carbon‐based SIBs anodes for next‐generation large‐scale electricity storage.  相似文献   

7.
Determining the relevance and importance of a technosphere process or a cluster of processes in relation to the rest of the industrial network can provide insights into the sustainability of supply chains: those that need to be optimized or controlled/safeguarded. Network analysis (NA) can offer a broad framework of indicators to tackle this problem. In this article, we present a detailed analysis of a life cycle inventory (LCI) model from an NA perspective. Specifically, the network is represented as a directed graph and the “emergy” numeraire is used as the weight associated with the arcs of the network. The case study of a technological system for drinking water production is presented. We investigate the topological and structural characteristics of the network representation of this system and compare properties of its weighted and unweighted network, as well as the importance of nodes (i.e., life cycle unit processes). By identifying a number of advantages and limitations linked to the modeling complexity of such emergy‐LCI networks, we classify the LCI technosphere network of our case study as a complex network belonging to the scale‐free network family. The salient feature of this network family is represented by the presence of “hubs”: nodes that connect with many other nodes. Hub failures may imply relevant changes, decreases, or even breaks in the connectedness with other smaller hubs and nodes of the network. Hence, by identifying node centralities, we can rank and interpret the relevance of each node for its special role in the life cycle network.  相似文献   

8.
9.
10.
Some aspects of the biology and ecology (life cycle, feeding and production) of a population of Isoptena serricornis in the Rudava River (Slovakia) are studied, reported and discussed. The life cycle is annual, with slow growth in autumn‐winter and fast growth in late summer and spring. The growth decreased two weeks before the Fall Equinox and increased two weeks after the Spring Equinox. The flight period spans from the end of May to the beginning of July. The presence of large sand particles in the gut of all studied nymphs is of note, and indicates that I. serricornis acts as a deposit‐collector species. Nymphal food is principally composed of detritus, unicellular organisms and, in nymphs of intermediate or large size, Chironomidae larvae. Adult food is composed fundamentally of different types of pollen grains. Males usually have lower food content than females. Annual production of this species (∼694–750 mg · m−2) is very high in relation to other previously studied Chloroperlidae. This is probably largely responsible for I. serricornis being one of the most abundant components of the macroinvertebrate community in its habitat in the Rudava River. A negative correlation between production and temperature was observed.  相似文献   

11.
With the rapid growth of the lithium‐ion battery (LIBs) market, recycling and re‐use of end‐of‐life LIBs to reclaim lithium (Li) and transition metal (TM) resources (e.g., Co, Ni), as well as eliminating pollution from disposal of waste batteries, has become an urgent task. Here, for the first time the ambient‐pressure relithiation of degraded LiNi0.5Co0.2Mn0.3O2 (NCM523) cathodes via eutectic Li+ molten‐salt solutions is successfully demonstrated. Combining such a low‐temperature relithiation process with a well‐designed thermal annealing step, NCM523 cathode particles with significant Li loss (≈40%) and capacity degradation (≈50%) can be successfully regenerated to achieve their original composition and crystal structures, leading to effective recovery of their capacity, cycling stability, and rate capability to the levels of the pristine materials. Advanced characterization tools including atomic resolution electron microscopy imaging and electron energy loss spectroscopy are combined to demonstrate that NCM523's original layered crystal structure is recovered. For the first time, it is shown that layer‐to‐rock salt phase change on the surfaces and subsurfaces of the cathode materials can be reversed if lithium can be incorporated back to the material. The result suggests the great promise of using eutectic Li+ molten–salt solutions for ambient‐pressure relithiation to recycle and remanufacture degraded LIB cathode materials.  相似文献   

12.
13.
SYNOPSIS. Polytomella caeca (Phytomonadida, Polyblepharidae) reproduce by binary fission and sexual reproduction. The sexual process increases in frequency as the population becomes denser. Normally 2 monoecious isogametes engage their anterior flagella prior to fusion, which occurs by merging of the cells from their anterior to their posterior ends. This is followed by a period of zygotic enlargement before cleavage of the zygote into 4 daughter cells. Encystment occurs throughout the flagellates' bloom until they represent 80% of the individuals at the end of the bloom. Cysts are a resistant, not reproductive stage. The observations were made over long periods of time by following individual flagellates in microcultures and by viewing living cells taken at various stages from larger cultures.  相似文献   

14.
Developing rechargeable lithium ion batteries with fast charge/discharge rate, high capacity and power, long lifespan, and broad temperature adaptability is still a significant challenge. In order to realize the fast and efficient transport of ions and electrons during the charging/discharging process, a 3D hierarchical carbon‐decorated Li3V2(PO4)3 is designed and synthesized with a nanoscale amorphous carbon coating and a microscale carbon network. The Brunauer–Emmett–Teller (BET) surface area is 65.4 m2 g?1 and the porosity allows for easy access of the electrolyte to the active material. A specific capacity of 121 mAh g?1 (91% of the theoretical capacity) can be obtained at a rate up to 30 C. When cycled at a rate of 20 C, the capacity retention is 77% after 4000 cycles, corresponding to a capacity fading of 0.0065% per cycle. More importantly, the composite cathode shows excellent temperature adaptability. The specific discharge capacities can reach 130 mAh g?1 at 20 C and 60 °C, and 106 mAh g?1 at 5 C and –20 °C. The rate performance and broad temperature adaptability demonstrate that this hierarchical carbon‐decorated Li3V2(PO4)3 is one of the most attractive cathodes for practical applications.  相似文献   

15.
A thermodynamic analysis of the driving forces is presented for intercalation and conversion reactions in battery cathodes across a range of possible working ion, transition metal, and anion chemistries. Using this body of results, the importance of polymorph selection as well as chemical composition on the ability of a host cathode to support intercalation reactions is analyzed. It is found that the accessibility of high energy charged polymorphs in oxides generally leads to larger intercalation voltages favoring intercalation reactions, whereas sulfides and selenides tend to favor conversion reactions. Furthermore, it is observed that Cr‐containing cathodes favor intercalation more strongly than those with other transition metals. Finally, it is concluded that two‐electron reduction of transition metals (as is possible with the intercalation of a 2 + ion) will favor conversion reactions in the compositions studied.  相似文献   

16.
Direct observations of schizonts and agamonts releasing megalospheres clarified the asexual phase of the life cycle of Peneroplis planatus and made it most probable that this species has a paratrimorphic life cycle. Specimens with maximum lengths between 837 and 3,503 μm released about 500 to 1,500 megalospheric juveniles, which possessed two chambers (proloculi and flexostyles) prior to emergence from the parental shell. The presence of gamonts was not shown and was only implied by the occurrence of the agamonts. Since agamonts and schizonts have been found from December to May and since asexual reproduction occurs in spring in Elat, sexual reproduction probably occurs at another time of year (June to December). More detailed studies of this species need to be conducted throughout the year to improve our knowledge of the life cycle of this species.  相似文献   

17.
18.
It is crucial to control the structure and composition of composite anode materials to enhance the cell performance of such anode materials for lithium ion batteries. Herein, a biomimetic strategy is demonstrated for the design of high performance anode materials, inspired by the structural characteristics and working principles of sticky spider‐webs. Hierarchically porous, sticky, spider‐web‐like multiwall carbon nanotube (MWCNT) networks are prepared through a process involving ozonation, ice‐templating assembly, and thermal treatment, thereby integrating the networks with γ‐Fe2O3 particles. The spider‐web‐like MWCNT/γ‐Fe2O3 composite network not only traps the active γ‐Fe2O3 materials tightly but also provides fast charge transport through the 3D internetworked pathways and the mechanical integrity. Consequently, the composite web shows a high capacity of ≈822 mA h g?1 at 0.05 A g?1, fast rate capability with ≈72.3% retention at rates from 0.05 to 1 A g?1, and excellent cycling stability of >88% capacity retention after 310 cycles with a Coulombic efficiency >99%. These remarkable electrochemical performances are attributed to the complementarity of the 3D spider‐web‐like structure with the strong attachment of γ‐Fe2O3 particles on the sticky surface. This synthetic strategy offers an environmentally safe, simple, and cost‐effective avenue for the biomimetic design of high performance energy storage materials.  相似文献   

19.
Na3V2(PO4)3 (NVP) is regarded as a promising cathode for advanced sodium‐ion batteries (SIBs) due to its high theoretical capacity and stable sodium (Na) super ion conductor (NASICON) structure. However, strongly impeded by its low electronic conductivity, the general NVP delivers undesirable rate capacity and fails to meet the demands for quick charge. Herein, a novel and facile synthesis of layer‐by‐layer NVP@reduced graphene oxide (rGO) nanocomposite is presented through modifying the surface charge of NVP gel precursor. The well‐designed layered NVP@rGO with confined NVP nanocrystal in between rGO layers offers high electronic and ionic conductivity as well as stable structure. The NVP@rGO nanocomposite with merely ≈3.0 wt% rGO and 0.5 wt% amorphous carbon, yet exhibits extraordinary electrochemical performance: a high capacity (118 mA h g?1 at 0.5 C attaining the theoretical value), a superior rate capability (73 mA h g?1 at 100 C and even up to 41 mA h g?1 at 200 C), ultralong cyclability (70.0% capacity retention after 15 000 cycles at 50 C), and stable cycling performance and excellent rate capability at both low and high operating temperatures. The proposed method and designed layer‐by‐layer active nanocrystal@rGO strategy provide a new avenue to create nanostructures for advanced energy storage applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号