首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon‐supported precious metal single‐atom catalysts (PM SACs) have shown promising application in proton exchange membrane fuel cells (PEMFCs). However, the coordination principle of the active site, consisting of one PM atom and several coordinating anions, is still unclear for PM SACs. Here, a sequential coordination method is developed to dope a large amount of PM atoms (Ir, Rh, Pt and Pd) into a zeolite imidazolate framework (ZIF), which are further pyrolyzed into nitrogen‐coordinated PM SACs. The PM loadings are as high as 1.2–4.5 wt%, achieving the highest PM loadings in ZIF‐derived SACs to date. In the acidic half‐cell, Ir1‐N/C and Rh1‐N/C exhibit much higher oxygen reduction reaction (ORR) activities than nanoparticle catalysts Ir/C and Rh/C. In the contrast, the activities of Pd1‐N/C and Pt1‐N/C are considerably lower than Pd/C and Pt/C. Density function theory (DFT) calculations reveal that the ORR activity of PM SAC depends on the match between the OH* adsorption on PM and the electronegativity of coordinating anions, and the stronger OH* adsorption is, the higher electronegativity is needed for the coordinating anions. PEMFC tests confirm the active‐site coordination principle and show the extremely high atomic efficiency of Ir1‐N/C. The revealed principle provides guidance for designing future PM SACs for PEMFCs.  相似文献   

2.
3.
PtM alloy catalysts (e.g., PtFe, PtCo), especially in an intermetallic L10 structure, have attracted considerable interest due to their respectable activity and stability for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, metal‐catalyzed formation of ·OH from H2O2 (i.e., Fenton reaction) by Fe‐ or Co‐containing catalysts causes severe degradation of PEM/catalyst layers, hindering the prospects of commercial applications. Zinc is known as an antioxidant in Fenton reaction, but is rarely alloyed with Pt owing to its relatively negative redox potential. Here, sub‐4 nm intermetallic L10‐PtZn nanoparticles (NPs) are synthesized as high‐performance PEMFC cathode catalysts. In PEMFC tests, the L10‐PtZn cathode achieves outstanding activity (0.52 A mgPt?1 at 0.9 ViR‐free, and peak power density of 2.00 W cm?2) and stability (only 16.6% loss in mass activity after 30 000 voltage cycles), exceeding the U.S. DOE 2020 targets and most of the reported ORR catalysts. Density function theory calculations reveal that biaxial strains developed upon the disorder‐order (A1? L10) transition of PtZn NPs would modulate the surface Pt? Pt distances and optimize Pt? O binding for ORR activity enhancement, while the increased vacancy formation energy of Zn atoms in an ordered structure accounts for the improved stability.  相似文献   

4.
A metalorganic gaseous doping approach for constructing nitrogen‐doped carbon polyhedron catalysts embedded with single Fe atoms is reported. The resulting catalysts are characterized using scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray absorption spectroscopy; for the optimal sample, calculated densities of Fe–Nx sites and active N sites reach 1.75812 × 1013 and 1.93693 × 1014 sites cm‐2, respectively. Its oxygen reduction reaction half‐wave potential (0.864 V) is 50 mV higher than that of 20 wt% Pt/C catalyst in an alkaline medium and comparable to the latter (0.78 V vs 0.84 V) in an acidic medium, along with outstanding durability. More importantly, when used as a hydrogen–oxygen polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst with a catalyst loading as low as 1 mg cm‐2 (compared with a conventional loading of 4 mg cm‐2), it exhibits a current density of 1100 mA cm‐2 at 0.6 V and 637 mA cm‐2 at 0.7 V, with a power density of 775 mW cm‐2, or 0.775 kW g–1 of catalyst. In a hydrogen–air PEMFC, current density reaches 650 mA cm‐2 at 0.6 V and 350 mA cm‐2 at 0.7 V, and the maximum power density is 463 mW cm‐2, which makes it a promising candidate for cathode catalyst toward high‐performance PEMFCs.  相似文献   

5.
By virtue of diverse structures and tunable properties, metal‐organic frameworks (MOFs) have presented extensive applications including gas capture, energy storage, and catalysis. Recently, synthesis of MOFs and their derived nanomaterials provide an opportunity to obtain competent oxygen reduction reaction (ORR) electrocatalysts due to their large surface area, controllable composition and pore structure. This review starts with the introduction of MOFs and current challenges of ORR, followed by the discussion of MOF‐based non‐precious metal nanocatalysts (metal‐free and metal/metal oxide‐based carbonaceous materials) and their application in ORR electrocatalysis. Current issues in MOF‐derived ORR catalysts and some corresponding strategies in terms of composition and morphology to enhance their electrocatalytic performance are highlighted. In the last section, a perspective for future development of MOFs and their derivatives as catalysts for ORR is discussed.  相似文献   

6.
7.
Microbial fuel cell (MFC) can generate electricity from organic substances based on anodic electrochemically active microorganisms and cathodic oxygen reduction reaction (ORR), thus exhibiting promising potential for harvesting electric energy from organic wastewater. The ORR performance is crucial to both power production efficiency and overall cost of MFC. A new type of metal‐organic‐framework‐derived electrocatalysts containing cobalt and nitrogen‐doped carbon (CoNC) is developed, which is effective to enhance activity, selectivity, and stability toward four‐electron ORR in pH‐neutral electrolyte. When glucose is used as the substrate, the maximum power density of 1665 mW m?2 is achieved for the optimized CoNC pyrolyzed at 900 °C, which is 39.8% higher than that of 1191 mW m?2 for commercial Pt/C catalyst in the single‐chamber MFC. The improved performance of CoNC catalyst can be attributed to large surface area, microporous nature, and the involvement of nitrogen‐coordinated cobalt species. These properties enable the efficient ORR by increasing the active sites and enhancing mass transfer of oxygen and protons at “water‐flooding” three‐phase boundary where ORR occurs. This work provides a proof‐of‐concept demonstration of a noble‐metal‐free high‐efficiency and cost‐effective ORR electrocatalyst for effective recovery of electricity from biomass materials and organic wastewater in MFC.  相似文献   

8.
9.
The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media.  相似文献   

10.
A single material that can perform water oxidation and oxygen reduction reactions (ORR), also called bifunctional catalyst, represents a novel concept that emerged from recent materials research and that has led to applications in new‐generation energy‐storage systems, such as regenerative fuel cells. Here, metal/metal‐oxide free, doped graphene derived from rhombohedral boron carbide (B4C) is demonstrated to be an effective bifunctional catalyst for the first time. B4C, one of the hardest materials in nature next to diamond and cubic boron nitride, is converted and separated in bulk to form heteroatom (boron, B) doped graphene (BG, yield ≈7% by weight, after the first cycle). This structural conversion of B4C to graphene is accompanied by in situ boron doping and results in the formation of an electrochemically active material from a non‐electrochemically active material, broadening its potential for application in various energy‐related technologies. The electrocatalytic efficacy of BG is studied using various voltammetric techniques. The results show a four‐electron transfer mechanism as well as a high methanol tolerance and stability towards ORR. The results are comparable to those from commercial 20 wt% Pt/C in terms of performance. Furthermore, the bifunctionality of the BG is also demonstrated by its performance in water oxidation.  相似文献   

11.
12.
Developing highly efficient, cost effective, and environmentally friendly electrocatalysts for the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) is of interest for sustainable and clean energy technologies, including metal–air batteries and fuel cells. In this work, the screening of electrocatalytic activities of a series of single metallic iron, cobalt, and nickel nanoparticles and their binary and ternary alloys encapsulated in a graphitic carbon shell toward the OER, ORR, and HER in alkaline media is reported. Synthesis of these compounds proceeds by a two‐step sol–gel and carbothermal reduction procedure. Various ex situ characterizations show that with harsh electrochemical activation, the graphitic shell undergoes an electrochemical exfoliation. The modified electronic properties of the remaining graphene layers prevent their exfoliation, protect the bulk of the metallic cores, and participate in the electrocatalysis. The amount of near‐surface, higher‐oxidation‐state metals in the as‐prepared samples increases with electrochemical cycling, indicating that some metallic nanoparticles are not adequately encased within the graphite shell. Such surface oxide species provide secondary active sites for the electrocatalytic activities. The Ni–Fe binary system gives the most promising results for the OER, and the Co–Fe binary system shows the most promise for the ORR and HER.  相似文献   

13.
Fuel cells are highly attractive for direct chemical‐to‐electrical energy conversion and represent the ultimate mobile power supply solution. However, presently, fuel cells are limited by the sluggish kinetics of the cathodic oxygen reduction reaction (ORR), which requires the use of Pt as a catalyst, thus significantly increasing the overall cost of the cells. Recently, nonprecious metal single‐atom catalysts (SACs) with high ORR activity under both acidic and alkaline conditions have been recognized as promising cost‐effective alternatives to replace Pt in fuel cells. Considerable efforts have been devoted to further improving the ORR activity of SACs, including tailoring the coordination structure of the metal centers, enriching the concentration of the metal centers, and engineering the electronic structure and porosity of the substrate. Herein, a brief introduction to fuel cells and fundamentals of the ORR parameters of SACs and the origin of their high activity is provided, followed by a detailed review of the recently developed strategies used to optimize the ORR activity of SACs in both rotating disk electrode and membrane electrode assembly tests. Remarks and perspectives on the remaining challenges and future directions of SACs for the development of commercial fuel cells are also presented.  相似文献   

14.
Transition metal atoms with corresponding nitrogen coordination are widely proposed as catalytic centers for the oxygen reduction reaction (ORR) in metal–nitrogen–carbon (M–N–C) catalysts. Here, an effective strategy that can tailor Fe–N–C catalysts to simultaneously enrich the number of active sites while boosting their intrinsic activity and utilization is reported. This is achieved by edge engineering of FeN4 sites via a simple ammonium chloride salt‐assisted approach, where a high fraction of FeN4 sites are preferentially generated and hosted in a graphene‐like porous scaffold. Theoretical calculations reveal that the FeN4 moieties with adjacent pore defects are likely to be more active than the nondefective configuration. Coupled with the facilitated accessibility of active sites, this prepared catalyst, when applied in a practical H2–air proton exchange membrane fuel cell, delivers a remarkable peak power density of 0.43 W cm?2, ranking it as one of the most active M–N–C catalysts reported to date. This work provides a new avenue for boosting ORR activity by edge manipulation of FeN4 sites.  相似文献   

15.
16.
Rational synthesis of hybrid, earth‐abundant materials with efficient electrocatalytic functionalities are critical for sustainable energy applications. Copper is theoretically proposed to exhibit high reduction capability close to Pt, but its high diffusion behavior at elevated fabrication temperatures limits its homogeneous incorporation with carbon. Here, a Cu, Co‐embedded nitrogen‐enriched mesoporous carbon framework (CuCo@NC) is developed using, a facile Cu‐confined thermal conversion strategy of zeolitic imidazolate frameworks (ZIF‐67) pre‐grown on Cu(OH)2 nanowires. Cu ions formed below 450 °C are homogeneously confined within the pores of ZIF‐67 to avoid self‐aggregation, while the existence of Cu? N bonds further increases the nitrogen content in carbon frameworks derived from ZIF‐67 at higher pyrolysis temperatures. This CuCo@NC electrocatalyst provides abundant active sites, high nitrogen doping, strong synergetic coupling, and improved mass transfer, thus significantly boosting electrocatalytic performances in oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). A high half‐wave potential (0.884 V vs reversible hydrogen potential, RHE) and a large diffusion‐limited current density are achieved for ORR, comparable to or exceeding the best reported earth‐abundant ORR electrocatalysts. In addition, a low overpotential (145 mV vs RHE) at 10 mA cm?2 is demonstrated for HER, further suggesting its great potential as an efficient electrocatalyst for sustainable energy applications.  相似文献   

17.
Controlling active sites of metal‐free catalysts is an important strategy to enhance activity of the oxygen evolution reaction (OER). Many attempts have been made to develop metal‐free catalysts, but the lack of understanding of active‐sites at the atomic‐level has slowed the design of highly active and stable metal‐free catalysts. A sequential two‐step strategy to dope sulfur into carbon nanotube–graphene nanolobes is developed. This bidoping strategy introduces stable sulfur–carbon active‐sites. Fluorescence emission of the sulfur K‐edge by X‐ray absorption near edge spectroscopy (XANES) and scanning transmission electron microscopy electron energy loss spectroscopy (STEM‐EELS) mapping and spectra confirm that increasing the incorporation of heterocyclic sulfur into the carbon ring of CNTs not only enhances OER activity with an overpotential of 350 mV at a current density of 10 mA cm?2, but also retains 100% of stability after 75 h. The bidoped sulfur carbon nanotube–graphene nanolobes behave like the state‐of‐the‐art catalysts for OER but outperform those systems in terms of turnover frequency (TOF) which is two orders of magnitude greater than (20% Ir/C) at 400 mV overpotential with very high mass activity 1000 mA cm?2 at 570 mV. Moreover, the sulfur bidoping strategy shows high catalytic activity for the oxygen reduction reaction (ORR). Stable bifunctional (ORR and OER) catalysts are low cost, and light‐weight bidoped sulfur carbon nanotubes are potential candidates for next‐generation metal‐free regenerative fuel cells.  相似文献   

18.
Designing an electrocatalyst with low Pt content is an immediate need for essential reactions in low temperature fuel cell systems. In the present work, La0.9925Ba0.0075Al0.995Pt0.005O3 is aimed at using with low (only 0.5%) Pt doping as an electrocatalyst for oxygen reduction reaction (ORR). The low doping level renders exsolution of 1–2 nm nanoparticles with uniform dispersion upon reduction in H2/N2 at low temperatures. Pt exsolved perovskite oxides deliver significantly enhanced catalytic activity for ORR and improved stability in alkaline media. This study demonstrates that LaAlO3 with low noble metal content holds immense potential as an electrocatalyst in real fuel cell systems.  相似文献   

19.
20.
The development of dual catalysts with high efficiency toward oxygen reduction and evolution reactions (ORR and OER) in acidic media is a significant challenge. Here an active and durable dual catalyst based upon cubic Pt39Ir10Pd11 nanocages with an average edge length of 12.3 nm, porous walls as thin as 1.0 nm, and well‐defined {100} facets is reported. The trimetallic nanocages perform better than all the reported dual catalysts in acidic media, with a low ORR‐OER overpotential gap of only 704 mV at a Pt‐Ir‐Pd loading of 16.8 µgPt+Ir+Pd cm?2geo. For ORR at 0.9 V, when benchmarked against the commercial Pt/C and Pt‐Pd nanocages, the trimetallic nanocages exhibit an enhanced mass activity of 0.52 A mg?1Pt+Ir+Pd (about four and two times as high as those of the Pt/C and Pt‐Pd nanocages) and much improved durability. For OER, the trimetallic nanocages show a remarkable mass activity of 0.20 A mg?1Pt+Ir at 1.53 V, which is 16.7 and 4.3 fold relative to those of the Pt/C and Pt‐Pd nanocages, respectively. These improvements can be ascribed to the highly open structure of the nanocages, and the possible electronic coupling between Ir and Pt atoms in the lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号