首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The limits of maximizing the open‐circuit voltage Voc in solar cells based on poly[2,7‐(9,9‐didecylfluorene)‐alt‐5,5‐(4,7‐di‐2‐thienyl‐2,1,3‐benzothiadiazole)] (PF10TBT) as a donor using different fullerene derivatives as acceptor are investigated. Bulk heterojunction solar cells with PF10TBT and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) give a Voc over 1 V and a power conversion efficiency of 4.2%. Devices in which PF10TBT is blended with fullerene bisadduct derivatives give an even higher Voc, but also a strong decrease in short circuit current (Jsc). The higher Voc is attributed to the higher LUMO of the acceptors in comparison to PCBM. By investigating the photophysics of PF10TBT:fullerene blends using near‐IR photo‐ and electroluminescence, time‐resolved photoluminescence, and photoinduced absorption we find that the charge transfer (CT) state is not formed efficiently when using fullerene bisadducts. Hence, engineering acceptor materials with a LUMO level that is as high as possible can increase Voc, but will only provide a higher power conversion efficiency, when the quantum efficiency for charge transfer is preserved. To quantify this, we determine the CT energy (ECT) and optical band gap (Eg), defined as the lowest first singlet state energy ES1 of either the donor or acceptor, for each of the blends and find a clear correlation between the free energy for photoinduced electron transfer and Jsc. We find that Eg ? qVoc > 0.6 eV is a simple, but general criterion for efficient charge generation in donor‐acceptor blends.  相似文献   

3.
Surface modulation via injection or extraction of charge carriers in microelectric devices has been used to tune the energy band alignment for desired electrical and optical properties, yet not well recognized in photocatalysis field. Here, taking semiconductor bismuth tantalum oxyhalides (Bi4TaO8X) as examples, chemically inactive molybdenum oxide (MoO3) with a large work function is introduced to qualitatively tune the properties of interfacial charges, achieving an evidently enhanced upward band bending and intensive built‐in electric field. Such a simple charge modulation exhibits a remarkable improvement in photocatalytic water oxidation, reaching an apparent quantum efficiency of 25% at the input wavelength of 420 nm. The validity and generality of surface charge modulating strategy are further demonstrated using other semiconductors (e.g., C3N4) and decorators (e.g., V2O5). The findings not only provide a promising strategy for rationally manipulating the interfacial built‐in electric field in photocatalysis but also pave the way to learn from microelectronic technologies to construct artificial photosynthesis systems for solar energy conversion.  相似文献   

4.
Tumour cells produce and excrete to blood many substances which are present in the cell itself in trace amounts only. Our work has been aimed at the determination of changes in electric charge and in phospholipid composition of large intestine normal mucosa and colorectal cancer cells.Surface charge density of tumour unaffected mucosa and of tissue sections from tumours, was measured by electrophoresis. The measurements were carried out at various pH of solution. Membrane isoelectric point was determined by measuring its electric charge in function of pH as well as total positive charge at low pH and total negative charge at high pH. Qualitative and quantitative composition of phospholipids in the membrane was determined by HPLC. Four phospholipid classes were identified: PI, PS, PE and PC and their surface concentrations were determined.The electric charge calculated from phospholipid concentrations is by three orders of magnitude higher than that determined electrophoretically. It indicates that the groups present in the membrane surface are involved in equilibria in which the charge is neutralized.The electric charge calculated from phospholipid concentrations is by three orders of magnitude higher than that determined electrophoretically. It indicates that the groups present in the membrane surface are involved in equilibria in which the charge is neutralized.Tumour changes provoke an increase in surface charge density of large intestine membrane, whereas the content of individual phospholipids increased or decreased depending on a patient.  相似文献   

5.
6.
Charge generation and charge decay are two essential factors that determine the surface charge density of a triboelectric nanogenerator (TENG). However, research mainly focuses on boosting charge generation, and little attention is paid to suppressing charge decay. Here, a strategy of suppressing charge decay, including the air breakdown and dielectric charge leakage, of TENG with high surface charge density (HCD-TENG) is proposed by utilizing a dual dielectric layer. A series of parameters of different dielectric materials are tested with the assistance of a charge excitation TENG (CE-TENG) to reveal the relationships between charge generation, air breakdown, and dielectric charge leakage in the atmospheric environment. Further, the phenomenon of dielectric charge leakage limiting the maximum output of TENG prior to air breakdown is observed for the first time. With the simultaneous suppression of the air breakdown and dielectric charge leakage, the output of TENG is enhanced to 2.2 mC m−2. This work not only provides new insight into the performance optimization and material selection of TENG, but also provides significant guidance for obtaining high-output TENG in the future.  相似文献   

7.
No changes in metabolism of adenosine phosphates as a function of short day induction were detected in cotyledons of Pharbitis nil Chois strain Violet. A gradual increase in ATP level was detected throughout the dark period in plumules. A rapid decline of ATP pool size was observed in induced plumules shortly after floral induction. The decline occurred close to the 14th hour of the dark period, 1 to 1.5 h after the dark period length required for a 90% flowering response, which is thought to be the minimum time required for transport of the floral stimulus (and assimilates) from the induced cotyledons to the plumule. Transport of the major adenylates from the cotyledons was verified using [14C]-adenine. Estimates of the amount, and rate, of adenylate transport suggest that the cotyledons could be an important source of adenylates to re-establish the ATP pool size in evoked plumules.  相似文献   

8.
Understanding the correlation between polymer aggregation, miscibility, and device performance is important to establish a set of chemistry design rules for donor polymers with nonfullerene acceptors (NFAs). Employing a donor polymer with strong temperature‐dependent aggregation, namely PffBT4T‐2OD [poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3″′‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2″′‐quaterthiophen‐5,5‐diyl)], also known as PCE‐11 as a base polymer, five copolymer derivatives having a different thiophene linker composition are blended with the common NFA O‐IDTBR to investigate their photovoltaic performance. While the donor polymers have similar optoelectronic properties, it is found that the device power conversion efficiency changes drastically from 1.8% to 8.7% as a function of thiophene content in the donor polymer. Results of structural characterization show that polymer aggregation and miscibility with O‐IDTBR are a strong function of the chemical composition, leading to different donor–acceptor blend morphology. Polymers having a strong tendency to aggregate are found to undergo fast aggregation prior to liquid–liquid phase separation and have a higher miscibility with NFA. These properties result in smaller mixed donor–acceptor domains, stronger PL quenching, and more efficient exciton dissociation in the resulting cells. This work indicates the importance of both polymer aggregation and donor–acceptor interaction on the formation of bulk heterojunctions in polymer:NFA blends.  相似文献   

9.
Prolonged cold (2°C) treatment of winter rape plants ( Brassica napus L. var. oleifera L. cv. Górczański) markedly modified the pattern of leaf growth and brought about changes in the level of pyridine nucleotides already during the first few days of treatment. The NAD+, NADP+ and NADPH levels markedly increased but there was practically no effect on the NADH level. Changes in the respective nucleotide levels were reflected by changes in anabolic and catabolic reduction charges. The former increased by 70%, whereas the latter decreased by 44%. Alterations in pyridine nucleotide levels and the reduction charges are discussed in terms of possible mechanisms involved, as well as in terms of their role in plant adaptation to cold.  相似文献   

10.
All‐inorganic CsPbIBr2 perovskite solar cells (pero‐SCs) exhibit excellent overall stability, but their power conversion efficiencies (PCEs) are greatly limited by their wide bandgaps. Integrated solar cells (ISCs) are considered to be an emergent technology that could extend their photoresponse by directly stacking two distinct photoactive layers with complementary bandgaps. However, rising photocurrents always sacrifice other photovoltaic parameters, thereby leading to an unsatisfactory PCE. Here, a recast strategy is proposed to optimize the spatial distribution components of low‐bandgap organic bulk‐heterojunction (BHJ) film, and is combined with an all‐inorganic perovskite to construct perovskite/BHJ ISCs. With this strategy, the integrated perovskite/BHJ film with a top‐enriched donor‐material spatial distribution is shown to effectively improve ambipolar charge transport behavior and suppress charge carrier recombination. For the first time, the ISC is not only significantly extended and enhanced the photoresponse achieving a 20% increase in current density, but also exhibits a high open‐circuit voltage and fill factor at the same time. As a result, a record PCE of 11.08% based on CsPbIBr2 pero‐SCs is realized; it simultaneously shows excellent long‐term stability against heat and ultraviolet light.  相似文献   

11.
Charge transport in organic photovoltaic (OPV) devices is often characterized by space‐charge limited currents (SCLC). However, this technique only probes the transport of charges residing at quasi‐equilibrium energies in the disorder‐broadened density of states (DOS). In contrast, in an operating OPV device the photogenerated carriers are typically created at higher energies in the DOS, followed by slow thermalization. Here, by ultrafast time‐resolved experiments and simulations it is shown that in disordered polymer/fullerene and polymer/polymer OPVs, the mobility of photogenerated carriers significantly exceeds that of injected carriers probed by SCLC. Time‐resolved charge transport in a polymer/polymer OPV device is measured with exceptionally high (picosecond) time resolution. The essential physics that SCLC fails to capture is that of photo­generated carrier thermalization, which boosts carrier mobility. It is predicted that only for materials with a sufficiently low energetic disorder, thermalization effects on carrier transport can be neglected. For a typical device thickness of 100 nm, the limiting energetic disorder is σ ≈71 (56) meV for maximum‐power point (short‐circuit) conditions, depending on the error one is willing to accept. As in typical OPV materials the disorder is usually larger, the results question the validity of the SCLC method to describe operating OPVs.  相似文献   

12.
In order to detect the effect of the surface charge discreteness on the properties at the solid–liquid interface, a molecular dynamics simulation model considering the vibration of wall atoms was used to investigate the performance of ion and water under different charge distributions. Through the comparison between simulation results and the theoretical prediction, it was found that, with the increasing degree of discreteness, much more counterions were attracted to the surface. These ions formed a denser accumulating layer which was located much nearer to the surface and caused charge inversion. The ions in this layer were non-hydrated or partially hydrated. When a voltage was applied across the nanochannel, this dense accumulating layer did not move unlike the ions near the uniformly charged surface. From the water density profiles obtained in nanochannels with different surface charge distributions, the influence of the surface charge discreteness on water distributions could be neglected.  相似文献   

13.
To determine the role of photon energy on charge generation in bulk heterojunction solar cells, the bias voltage dependence of photocurrent for excitation with photon energies below and above the optical band gap is investigated in two structurally related polymer solar cells. Charges generated in (poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothia­diazole)] (C‐PCPDTBT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) solar cells via excitation of the low‐energy charge transfer (CT) state, situated below the optical band gap, need more voltage to be extracted than charges generated with excitation above the optical band gap. This indicates a lower effective binding energy of the photogenerated electrons and holes when the excitation is above the optical band gap than when excitation is to the bottom of the CT state. In blends of PCBM with the silicon‐analogue, poly[(4,4‐bis(2‐ethylhexyl)dithieno[3,2‐b:2,3d]silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl] (Si‐PCPDTBT), there is no effect of the photon energy on the electric field dependence of the dissociation efficiency of the CT state. C‐PCPDTBT and Si‐PCPDTBT have very similar electronic properties, but their blends with PCBM differ in the nanoscale phase separation. The morphology is coarser and more crystalline in Si‐PCPDTBT:PCBM blends. The results demonstrate that the nanomorphological properties of the bulk heterojunction are important for determining the effective binding energy in the generation of free charges at the heterojunction.  相似文献   

14.
Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3‐hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non‐Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10?4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time‐of‐flight measurements reveals a long‐lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness‐independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.  相似文献   

15.
16.
Reduced graphene oxides (rGO) are synthesized via reduction of GO with reducing agents as a hole‐extraction layer for high‐performance inverted planar heterojunction perovskite solar cells. The best efficiencies of power conversion (PCE) of these rGO cells exceed 16%, much greater than those made of GO and poly(3,4‐ethenedioxythiophene):poly(styrenesulfonate) films. A flexible rGO device shows PCE 13.8% and maintains 70% of its initial performance over 150 bending cycles. It is found that the hole‐extraction period is much smaller for the GO/methylammonium lead‐iodide perovskite (PSK) film than for the other rGO/PSK films, which contradicts their device performances. Photoluminescence and transient photoelectric decays are measured and control experiments are performed to prove that the reduction of the oxygen‐containing groups in GO significantly decreases the ability of hole extraction from PSK to rGO and also retards the charge recombination at the rGO/PSK interface. When the hole injection from PSK to GO occurs rapidly, hole propagation from GO to the indium‐doped tin oxide (ITO) substrate becomes a bottleneck to overcome, which leads to a rapid charge recombination that decreases the performance of the GO device relative to the rGO device.  相似文献   

17.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   

18.
Relationships between protein structure and ionization of carboxyl groups were investigated in 24 proteins of known structure and for which 115 aspartate and 97 glutamate pK(a) values are known. Mean pK(a) values for aspartates and glutamates are < or = 3.4 (+/-1.0) and 4.1 (+/-0.8), respectively. For aspartates, mean pK(a) values are 3.9 (+/-1.0) and 3.1 (+/-0.9) in acidic (pI < 5) and basic (pI > 8) proteins, respectively, while mean pK(a) values for glutamates are approximately 4.2 for acidic and basic proteins. Burial of carboxyl groups leads to dispersion in pK(a) values: pK(a) values for solvent-exposed groups show narrow distributions while values for buried groups range from < 2 to 6.7. Calculated electrostatic potentials at the carboxyl groups show modest correlations with experimental pK(a) values and these correlations are not improved by including simple surface-area-based terms to account for the effects of desolvation. Mean aspartate pK(a) values decrease with increasing numbers of hydrogen bonds but this is not observed at glutamates. Only 10 pK(a) values are > 5.5 and most are found in active sites or ligand-binding sites. These carboxyl groups are buried and usually accept no more than one hydrogen bond. Aspartates and glutamates at the N-termini of helices have mean pK(a) values of 2.8 (+/-0.5) and 3.4 (+/-0.6), respectively, about 0.6 units less than the overall mean values.  相似文献   

19.
Excitation energy trapping and charge separation in Photosystem II were studied by kinetic analysis of the fast photovoltage detected in membrane fragments from peas with picosecond excitation. With the primary quinone acceptor oxidized the photovoltage displayed a biphasic rise with apparent time constants of 100–300 ps and 550±50 ps. The first phase was dependent on the excitation energy whereas the second phase was not. We attribute these two phases to trapping (formation of P-680+ Phe-) and charge stabilization (formation of P-680+ QA -), respectively. A reversibility of the trapping process was demonstrated by the effect of the fluorescence quencher DNB and of artificial quinone acceptors on the apparent rate constants and amplitudes. With the primary quinone acceptor reduced a transient photoelectric signal was observed and attributed to the formation and decay of the primary radical pair. The maximum concentration of the radical pair formed with reduced QA was about 30% of that measured with oxidized QA. The recombination time was 0.8–1.2 ns.The competition between trapping and annihilation was estimated by comparison of the photovoltage induced by short (30 ps) and long (12 ns) flashes. These data and the energy dependence of the kinetics were analyzed by a reversible reaction scheme which takes into account singlet-singlet annihilation and progressive closure of reaction centers by bimolecular interaction between excitons and the trap. To put on firmer grounds the evaluation of the molecular rate constants and the relative electrogenicity of the primary reactions in PS II, fluorescence decay data of our preparation were also included in the analysis. Evidence is given that the rates of radical pair formation and charge stabilization are influenced by the membrane potential. The implications of the results for the quantum yield are discussed.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNB m-dinitrobenzene - PPBQ phenyl-p-benzoquinone - PS I photosystem I of green plants - PS II photosystem II of green plants - PSU photosynthetic unit - P-680 primary donor of PS II - Phe intermediary pheophytin acceptor of PS II - QA primary quinone acceptor of PS II - RC reaction center  相似文献   

20.
Charge‐transfer (CT) state electroluminescence is investigated in several polymer:fullerene bulk heterojunction solar cells. The ideality factor of the electroluminescence reveals that the CT emission in polymer:fullerene solar cells originates from free‐carrier bimolecular recombination at the donor‐acceptor interface, rather than a charge‐trap‐mediated process. The fingerprint of the presence of nonradiative trap‐assisted recombination, a voltage‐dependent CT electroluminescence quantum efficiency, is only observed for the P3HT:PCBM system, which is explained by a reduction of the competing bimolecular recombination rate. These results are in agreement with measurements of the illumination‐intensity dependence of the open‐circuit voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号