首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrode/electrolyte interfacial properties of flexible supercapacitors assembled with nanostructured activated carbon fabric (ACF) electrodes can be tailored by applying a pressure and tuning electrolyte ion size relative to electrode pore size. Experimental results reveal that increasing pressure between the supercapacitor electrodes can significantly improve capacitive performance. The ratio of solvated ion size in the electrolyte to the pore size on the electrodes determines the minimum pressure necessary to achieve an optimum performance. For a specific electrode material, this minimum pressure for optimum performance is primarily governed by the size of the larger solvated ions (either the anions or cations), and is lower (~689 KPa) when the ratio of the solvated ion size to the pore size is higher than 0.6, and is higher (at least 1379 KPa) when the ratio is lower than 0.6. An analytical model capable of predicting the experimental performance data has been developed. These results together provide a fundamental understanding of pressure dependence of electrode/electrolyte interfacial properties and pave the way for practical applications of flexible supercapacitors.  相似文献   

2.
In this study we examine the release profile of bovine serum albumin (BSA) from a porous polymer matrix derived from a co-continuous polymer blend. The porosity is generated through the selective extraction of one of the continuous phases. This is the first study to examine the approach of using morphologically tailored co-continuous polymer blends as a template for generating porous polymer materials for use in controlled release. A method for the preparation of polymeric capsules is introduced, and the effect of matrix pore size and surface area on the BSA release profile is investigated. Furthermore, the effect of surface charge on release is examined by surface modification of the porous substrate using layer-by-layer deposition techniques. Synthetic, nonerodible polymer, high-density polyethylene (HDPE), was used as a model substrate prepared by melt blending with two different styrene-ethylene-butylene copolymers. Blends with HDPE allow for the preparation of porous substrates with small pore sizes (300 and 600 nm). A blend of polylactide (PLA) and polystyrene was also used to prepare porous PLA with a larger pore size (1.5 microm). The extents of interconnectivity, surface area, and pore dimension of the prepared porous substrates were examined via gravimetric solvent extraction, BET nitrogen adsorption, mercury porosimetry, and image analysis of scanning electron microscopy micrographs. With a loading protocol into the porous HDPE and PLA involving the alternate application of pressure and vacuum, it is shown that virtually the entire porous network was accessible to BSA loading, and loading efficiencies of between 80% and 96% were obtained depending on the pore size of the carrier and the applied pressure. The release profile of BSA from the microporous structure was monitored by UV spectrophotometry. The influence of pore size, surface area, surface charge, and number of deposited layers is demonstrated. It is shown that an effective closed-cell structure in porous PLA can be prepared, effectively eliminating all short-term BSA release.  相似文献   

3.
A series of experiments is presented that establishes for the first time the role of some of the key design parameters of porous carbons including surface area, pore volume, and pore size on battery performance. A series of hierarchical porous carbons is used as a model system with an open, 3D, interconnected porous framework and highly controlled porosity. Specifically, carbons with surface areas ranging from ≈500–2800 m2 g?1, pore volume from ≈0.6–5 cm3 g?1, and pore size from micropores (≈1 nm) to large mesopores (≈30 nm) are synthesized and tested. At high sulfur loadings (≈80 wt% S), pore volume is more important than surface area with respect to sulfur utilization. Mesopore size, in the range tested, does not affect the sulfur utilization. No relationship between porosity and long‐term cycle life is observed. All systems fail after 200–300 cycles, which is likely due to the consumption of the LiNO3 additive over cycling. Moreover, cryo‐scanning transmission electron microscopy imaging of these carbon–sulfur composites combined with X‐ray diffraction (XRD) provides further insights into the effect of initial sulfur distribution on sulfur utilization while also revealing the inadequacy of the indirect characterization techniques alone in reliably predicting distribution of sulfur within porous carbon matrices.  相似文献   

4.
Rapid motion of electrolyte ions is a crucial requirement to ensure the fast charging/discharging and the high power densities of supercapacitor devices. This motion is primarily determined by the pore size and connectivity of the used porous carbon electrodes. Here, the diffusion characteristics of each individual electrolyte component, that is, anion, cation, and solvent confined to model carbons with uniform and well‐defined pore sizes are quantified. As a result, the contributions of micropores, mesopores, and hierarchical pore architectures to the overall transport of adsorbed mobile species are rationalized. Unexpectedly, it is observed that the presence of a network of mesopores, in addition to smaller micropores—the concept widely used in heterogeneous catalysis to promote diffusion of sorbates—does not necessarily enhance ionic transport in carbon materials. The observed phenomenon is explained by the stripping off the surrounding solvent shell from the electrolyte ions entering the micropores of the hierarchical material, and the resulting enrichment of solvent molecules preferably in the mesopores. It is believed that the presented findings serve to provide fundamental understanding of the mechanisms of electrolyte diffusion in carbon materials and depict a quantitative platform for the future designing of supercapacitor electrodes on a rational basis.  相似文献   

5.
Precisely controlling pore size of porous materials is of great importance for chiral separation, but a great challenge in practical applications. In contrast, the molecular dynamics (MD) simulation can be quite a convenient way to determine the effect of the pore dimension on the chiral resolution performances and thus to define the optimal pore size. In this work, inner-wall functionalised carbon nanotubes (CNTs) were used as porous materials and D- and L-phenylalanine were selected as chiral probes. The enantioseparation behaviour was investigated via varying the pore diameter of CNTs, controlling the grafting amount of chiral selectors and tuning the spacer length. Results show that varying the pore size has a significant effect on the enantioselectivity. Additionally, the effect of the introduction of varying the grafting ratio and tuning the spacer length on the chiral separation performance was also examined in this work. It was found that varying the grafting ratio, especially the spacer length between substrates and selectors, could also be one of the most effective alternatives to improving enantioselectivity. Our findings can provide a guidance for the practical applications in the chiral separation.  相似文献   

6.
Porosity and pore size regulated the degradation rate and the release of low molar mass degradation products from porous polylactide (PLA) scaffolds. PLA scaffolds with porosities above 90% and different pore size ranges were subjected to hydrolytic degradation and compared to their solid analog. The solid film degraded fastest and the degradation rate of the porous structures decreased with decreasing pore size. Degradation products were detected earlier from the solid films compared to the porous structures as a result of the additional migration path within the porous structures. An intermediate degradation rate profile was observed when the pore size range was broadened. The morphology of the scaffolds changed during hydrolysis where the larger pore size scaffolds showed sharp pore edges and cavities on the scaffold surface. In the scaffolds with smaller pores, the pore size decreased during degradation and a solid surface was formed on the top of the scaffold. Porosity and pore size, thus, influenced the degradation and the release of degradation products that should be taken into consideration when designing porous scaffolds for tissue engineering.  相似文献   

7.
At present, the three‐dimensional structure of the multimeric paracellular claudin pore is unknown. Using extant biophysical data concerning the size of the pore and permeation of water and cations through it, two three‐dimensional models of the pore are constructed in silico. Molecular Dynamics (MD) calculations are then performed to compute water and sodium ion permeation fluxes under the influence of applied hydrostatic pressure. Comparison to experiment is made, under the assumption that the hydrostatic pressure applied in the simulations is equivalent to osmotic pressure induced in experimental measurements of water/ion permeability. One model, in which pore‐lining charged is distributed evenly over a selectivity filter section 10–16 Å in length, is found to be generally consistent with experimental data concerning the dependence of water and ion permeation on channel pore diameter, pore length, and the sign and magnitude of pore lining charge. The molecular coupling mechanism between water and ion flow under conditions where hydrostatic pressure is applied is computationally elucidated. Proteins 2016; 84:305–315. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
The templating approach is a powerful method for preparing porous electrodes with interconnected well‐controlled pore sizes and morphologies. The optimization of the pore architecture design facilitates electrolyte penetration and provides a rapid diffusion path for lithium ions, which becomes even more crucial for thick porous electrodes. Here, NaCl microsize particles are used as a templating agent for the fabrication of 1 mm thick porous LiFePO4 and Li4Ti5O12 composite electrodes using spark plasma sintering technique. These sintered binder‐free electrodes are self‐supported and present a large porosity (40%) with relatively uniform pores. The electrochemical performances of half and full batteries reveal a remarkable specific areal capacity (20 mA h cm?2), which is 4 times higher than those of 100 µm thick electrodes present in conventional tape‐casted Li–ion batteries (5 mA h cm?2). The 3D morphological study is carried out using full field transmission X‐ray microscopy in microcomputed tomography mode to obtain tortuosity values and pore size distributions leading to a strong correlation with their electrochemical properties. These results also demonstrate that the coupling between the salt templating method and the spark plasma sintering technique turns out to be a promising way to fabricate thick electrodes with high energy density.  相似文献   

9.
A composite continuum theory for calculating ion current through a protein channel of known structure is proposed, which incorporates information about the channel dynamics. The approach is utilized to predict current through the Gramicidin A ion channel, a narrow pore in which the applicability of conventional continuum theories is questionable. The proposed approach utilizes a modified version of Poisson-Nernst-Planck (PNP) theory, termed Potential-of-Mean-Force-Poisson-Nernst-Planck theory (PMFPNP), to compute ion currents. As in standard PNP, ion permeation is modeled as a continuum drift-diffusion process in a self-consistent electrostatic potential. In PMFPNP, however, information about the dynamic relaxation of the protein and the surrounding medium is incorporated into the model of ion permeation by including the free energy of inserting a single ion into the channel, i.e., the potential of mean force along the permeation pathway. In this way the dynamic flexibility of the channel environment is approximately accounted for. The PMF profile of the ion along the Gramicidin A channel is obtained by combining an equilibrium molecular dynamics (MD) simulation that samples dynamic protein configurations when an ion resides at a particular location in the channel with a continuum electrostatics calculation of the free energy. The diffusion coefficient of a potassium ion within the channel is also calculated using the MD trajectory. Therefore, except for a reasonable choice of dielectric constants, no direct fitting parameters enter into this model. The results of our study reveal that the channel response to the permeating ion produces significant electrostatic stabilization of the ion inside the channel. The dielectric self-energy of the ion remains essentially unchanged in the course of the MD simulation, indicating that no substantial changes in the protein geometry occur as the ion passes through it. Also, the model accounts for the experimentally observed saturation of ion current with increase of the electrolyte concentration, in contrast to the predictions of standard PNP theory.  相似文献   

10.
In this article, we review how pressure effects in pores affect both the physics of the confined fluid and the properties of the host porous material. Molecular simulations in which high-pressure effects were observed are first discussed; we will see how the strong dependence on bulk phase pressure of the freezing temperature of a fluid confined in nanopores can be explained by important variations of the pressure within the pore. We then discuss recent works in which direct calculations of the pressure tensor of fluids confined in pores provide evidence for large pressure enhancements. Finally, practical applications of these pressure effects in which gas adsorption in microporous solids (pore size < 2 nm) was found to enhance their mechanical properties by increasing the elastic modulus by a factor 4 are discussed.  相似文献   

11.
The objective of this study was to examine membrane filtration of a single stranded DNA (ssDNA) with 60 thymine nucleotides, and to elucidate the variables controlling its transmission across track-etched porous membranes. Dead end filtration measurements were performed using different pore size membranes (10, 15, and 30 nm) at different transmembrane pressures in solutions with ionic strength ranging from 0 to 1000 mM NaCl. The diffusivity of the ssDNA was determined using fluorescence recovery after photobleaching, yielding hydrodynamic radii ranging from 1.6 to 2.8 nm, with values decreasing with increasing solution ionic strength. Despite the small ssDNA/membrane pore size, nearly 100% rejection was observed for measurements performed with the 10 and 15 nm pore size membranes under low-ionic strength conditions. These high rejections can be attributed to strong repulsive electrostatic ssDNA-membrane interactions. With increasing ionic strength, electrostatic interactions as well as the effective size of the ssDNA decreases and the flexibility of the ssDNA increases, leading to a reduction in ssDNA rejection. A design of experiments approach was used to plan filtration experiments that adequately covered the variable space with a manageable number of experiments. The results yielded an empirical expression relating ssDNA rejection to pore size, solution ionic strength and transmembrane pressure. There was evidence of flow induced elongation at high-transmembrane pressures in the 30 nm pore size membranes, but not in the smaller pore size membranes. These results are consistent with critical flux estimates developed using a free draining model for the ssDNA.  相似文献   

12.
Flexible energy‐storage devices have attracted growing attention with the fast development of bendable electronic systems. However, it still remains a challenge to find reliable electrode materials with both high mechanical flexibility/toughness and excellent electron and lithium‐ion conductivity. This paper reports the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium‐ion batteries. The systematic optimization of the porous morphology is performed by controllably inducing the phase separation of polymethylmethacrylate (PMMA) in polydimethylsiloxane (PDMS) and removing PMMA, in order to generate well‐controlled pore networks. It is demonstrated that the porous CNT‐embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium‐ion batteries. The optimization of the pore size and the volume fraction provides higher capacity by nearly seven‐fold compared to a nonporous nanocomposite.  相似文献   

13.
To investigate the process of ion permeation in an ion channel systematically, we performed molecular dynamics (MD) simulations on a gramicidin A (GA)-phospholipid model system with an ion in the channel pore region. Each of the three types of ions (Ca2+, Na+ Cl-) was placed at five different positions along the channel axis by replacing a water molecule. MD simulations were performed on each system at constant pressure and constant temperature. The MD trajectories showed that the Ca2+ and Na+ ions could stably fluctuate in the pore region, but the Cl- ion was pushed out because of the unfavorable interaction with the channel. This result is consistent with experimental data. It was also found that the conformation of the GA channel underwent a significant change due to the presence of the ion, and the two ends of the GA monomer were more flexible than its middle region. In particular, the dramatic change of local pore radius near the ion indicated this kind of deformation. The strong interaction between the ion and carbonyl oxygen atoms of GA was the major contributor to this change. Furthermore, it was found that the ethanolamine group of the GA molecule was the most flexible group in the GA channel and often observed to block the entrance of GA. These results imply that the deformation of channel structure plays a very important factor in ion permeation, and the ethanolamine group may play a key role in regulating ion entry into the pore. In conclusion, our results indicate that the ion has a dominant influence on the structure of the GA channel and that the flexibility of the ion channel is a crucial factor in the ion permeation process.  相似文献   

14.
The impact of the micropore width, external surface area, and meso‐/macropore size on the charging performance of electrochemical double‐layer capacitor (EDLC) electrodes is systematically investigated. Nonactivated carbon xerogels are used as model electrodes in aqueous and organic electrolytes. Monolithic porous model carbons with different structural parameters are prepared using a resorcinol‐formaldehyde‐based sol–gel process and subsequent pyrolysis of the organic precursors. Electrochemical properties are characterized by utilizing them as EDLC half‐cells operated in aqueous and organic electrolytes, respectively. Experimental data derived for organic electrolytes reveals that the respective ions cannot enter the micropores within the skeleton of the meso‐ and macroporous carbons. Therefore the total capacitance is limited by the external surface formed by the interface between the meso‐/macropores and the microporous carbon particles forming the xerogel skeleton. In contrast, for aqueous electrolytes the total capacitance solely depends on the total surface area, including interfaces at the micropore scale. For both types of electrolytes the charging rate of the electrodes is systematically enhanced when increasing the diameter of the carbon xerogel particles from 10 to 75 nm and the meso‐/macropore size from 10 to 121 nm.  相似文献   

15.
Three different theoretical approaches are used and compared to refine our understanding of ion permeation through the channel formed by OmpF porin from Escherichia coli. Those approaches are all-atom molecular dynamics (MD) in which ions, solvent, and lipids are represented explicitly, Brownian dynamics (BD) in which ions are represented explicitly, while solvent and lipids are represented as featureless dielectrics, and Poisson-Nernst-Planck (PNP) electrodiffusion theory in which both solvent and local ion concentrations are represented as a continuum. First, the ability of the different theoretical approaches in reproducing the equilibrium average ion density distribution in OmpF porin bathed by a 1M KCl symmetric salt solution is examined. Under those conditions the PNP theory is equivalent to the non-linear Poisson-Boltzmann (PB) theory. Analysis shows that all the three approaches are able to capture the important electrostatic interactions between ions and the charge distribution of the channel that govern ion permeation and selectivity in OmpF. The K(+) and Cl(-) density distributions obtained from the three approaches are very consistent with one another, which suggests that a treatment on the basis of a rigid protein and continuum dielectric solvent is valid in the case of OmpF. Interestingly, both BD and continuum electrostatics reproduce the distinct left-handed twisted ion pathways for K(+) and Cl(-) extending over the length of the pore which were observed previously in MD. Equilibrium BD simulations in the grand canonical ensemble indicate that the channel is very attractive for cations, particularly at low salt concentration. On an average there is 1.55 K(+) inside the pore in 10mM KCl. Remarkably, there is still 0.17 K(+) on average inside the pore even at a concentration as low as 1microM KCl. Secondly, non-equilibrium ion flow through OmpF is calculated using BD and PNP and compared with experimental data. The channel conductance in 0.2M and 1M KCl calculated using BD is in excellent accord with the experimental data. The calculations reproduce the experimentally well-known conductance-concentration relation and also reveal an asymmetry in the channel conductance (a larger conductance is observed under a positive transmembrane potential). Calculations of the channel conductance for three mutants (R168A, R132A, and K16A) in 1M KCl suggest that the asymmetry in the channel conductance arises mostly from the permanent charge distribution of the channel rather than the shape of the pore itself. Lastly, the calculated reversal potential in a tenfold salt gradient (0.1:1M KCl) is 27.4(+/-1.3)mV (BD) and 22.1(+/-0.6)mV (PNP), in excellent accord with the experimental value of 24.3mV. Although most of the results from PNP are qualitatively reasonable, the calculated channel conductance is about 50% higher than that calculated from BD probably because of a lack of some dynamical ion-ion correlations.  相似文献   

16.
A thin porous silica membrane (average pore size of 3.3 mm) was prepared by the sol–gel method and used to separate the solute from supercritical carbon dioxide. The characteristics of solute permeation were investigated in respect of the adsorption properties of the solute, the desorption rate of the solute from the membrane being measured and the potential energy of solute near the silica surface being calculated by the molecular modeling technique. It was found that caffeine was strongly adsorbed to the surface and then slowly desorbed to form an adsorption layer, making the pores narrower and causing a molecular-sieving effect. Therefore, the rejection value was positive. On the other hand, the rejection value of n-octanoic acid, which was well adsorbed and rapidly desorbed, was negative. It is presumed that the molecules filled the pores due to their potential energy and were then forced to flow through the pores by the transmembrane pressure.  相似文献   

17.
Vesicles of egg phosphatidylcholine (EPC) and phosphatidic acid (EPA) were prepared by reverse-phase evaporation (REV) followed either by sequential extrusion through polycarbonate membranes with pore diameters of 0.8, 0.4, 0.2, 0.1, and 0.05 micron or by filtration through 0.8-micron cellulosic or 0.22-micron polyvinylidene fluoride (PVF) membranes. The resulting vesicles ranging from 130 to 640 nm in mean diameter (REVs) were characterized by high-performance liquid chromatography (HPLC) using a TSK G6000 PW gel exclusion column. The efficiency of this technique to determine vesicle size parameters was studied by the analysis of the chromatograms in combination with dynamic light scattering (DLS) determination of the mean diameters (MD) of the fractionated vesicles in the region of the elution profile maxima. The HPLC TSK G6000 PW gel exclusion provides a reproducible and fast method of size characterization for lipid vesicles having MD up to 1 micron, the best selectivity being obtained in the 20- to 500-nm MD range. HPLC analysis of REV's demonstrates that: (i) both the average size and polydispersity of the vesicles decrease with decreasing pore size of the membranes, cellulosic or PVF "tortuous" ones being less efficient than "straight bores" polycarbonate ones; (ii) mixed EPC/EPA REVs sequentially extruded down through 0.2-micron polycarbonate membranes are highly deformable without rupture of the bilayer; and (iii) the mean size of extruded REV's is stable for at least 1 week. The role of EPA on the size stability of mixed EPC/EPA vesicles was studied by coupling HPLC gel exclusion and turbidity analysis of pure EPC and EPC/EPA (mole ratio: 91/9) sonicated small unilamellar vesicles as a function of time. The apparent size variation of EPC vesicles observed over a week, is mainly due to their aggregation which is significantly reduced by the introduction of a small amount of EPA in the vesicle membrane.  相似文献   

18.
High‐performance flexible energy‐storage devices have great potential as power sources for wearable electronics. One major limitation to the realization of these applications is the lack of flexible electrodes with excellent mechanical and electrochemical properties. Currently employed batteries and supercapacitors are mainly based on electrodes that are not flexible enough for these purposes. Here, a three‐dimensionally interconnected hybrid hydrogel system based on carbon nanotube (CNT)‐conductive polymer network architecture is reported for high‐performance flexible lithium ion battery electrodes. Unlike previously reported conducting polymers (e.g., polyaniline, polypyrrole, polythiophene), which are mechanically fragile and incompatible with aqueous solution processing, this interpenetrating network of the CNT‐conducting polymer hydrogel exibits good mechanical properties, high conductivity, and facile ion transport, leading to facile electrode kinetics and high strain tolerance during electrode volume change. A high‐rate capability for TiO2 and high cycling stability for SiNP electrodes are reported. Typically, the flexible TiO2 electrodes achieved a capacity of 76 mAh g–1 in 40 s of charge/discharge and a high areal capacity of 2.2 mAh cm–2 can be obtained for flexible SiNP‐based electrodes at 0.1C rate. This simple yet efficient solution process is promising for the fabrication of a variety of high performance flexible electrodes.  相似文献   

19.
Heteroatom‐doped porous carbon materials have attracted much attention because of their extensive application in energy conversion and storage devices. Because the performance of fuel cells and the rate capability of supercapacitors depend significantly on multiple factors, such as electrical conductivity and transport rate of ions and reactants, designing these carbon‐based materials to optimize performance factors is vital. In order to address these issues, alveoli that possess a hollow cavity where oxygen exchange can occur are synthesized, inspired by N‐doped carbon materials with a high surface area and low transport resistance. By incorporating a dopamine coating on zeolitic imidazolate framework (ZIF), pore size is modified and electrical conducting pathways are constructed, resulting in changes to the reaction kinetics. These highly interconnected electron connection channels and proper pore sizes facilitate the diffusion of reactants and the conduction of electrons, leading to high activity of the oxygen reduction reaction (ORR), which is comparable to Pt, and high rate performance in supercapacitors.  相似文献   

20.
Porous structure design is generally considered to be a reliable strategy to boost ion transport and provide active sites for disordered carbon anodes of Na‐ion batteries (NIBs). Herein, a type of waste cork‐derived hard carbon material (CC) is reported for efficient Na storage via tuning the pore species. Benefiting from the natural holey texture of this renewable precursor, CCs deliver a novel hierarchical porous structure. The effective skeletal density test combined with small angle X‐ray scattering analysis (SAXS) is used to obtain the closed pore information. Based on a detailed correlation analysis between pore information and the electrochemical performance of CCs, improving pyrolysis temperature to reduce open pores (related to initial capacity loss) and increase closed pores (related to plateau capacity) endows an optimal CC with a high specific capacity of ≈360 mAh g?1 in half‐cells and a high energy density of 230 Wh kg?1 in full‐cells with a capacity retention of 71% after 2000 cycles at 2C rate. The bioinspired high temperature pore‐closing strategy and the new insights about the pore structure–performance relationship provide a rational guide for designing porous carbon anode of NIBs with tailored pore species and high Na storage capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号