首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
As one of the important ingredients in lithium‐sulfur battery, the binders greatly impact the battery performance. However, conventional binders have intrinsic drawbacks such as poor capability of absorbing hydrophilic lithium polysulfides, resulting in severe capacity decay. This study reports a new type of binder by polymerization of hydrophilic poly(ethylene glycol) diglycidyl ether with polyethylenimine, which enables strongly anchoring polysulfides for high‐performance lithium sulfur batteries, demonstrating remarkable improvement in both mechanical performance for standing up to 100 g weight and an excellent capacity retention of 72% over 400 cycles at 1.5 C. Importantly, in situ micro‐Raman investigation verifies the effectively reduced polysulfides shuttling from sulfur cathode to lithium anode, which shows the greatly suppressed shuttle effect by the polar‐functional binder. X‐ray photoelectron spectroscopy analysis into the discharge intermediates upon battery cycling reveals that the hydrophilic binder endows the sulfur electrodes with multidimensional Li‐O, Li‐N, and S‐O interactions with sulfur species to effectively mitigate lithium polysulfide dissolution, which is theoretically confirmed by density‐functional theory calculations.  相似文献   

3.
4.
5.
The insulating nature of sulfur, polysulfide shuttle effect, and lithium‐metal deterioration cause a decrease in practical energy density and fast capacity fade in lithium‐sulfur (Li‐S) batteries. This study presents an integrated strategy for the development of hybrid Li‐S batteries based on a gel sulfur cathode, a solid electrolyte, and a protective anolyte composed of a highly concentrated salt electrolyte containing mixed additives. The dense solid electrolyte completely blocks polysulfide diffusion, and also makes it possible to investigate the cathode and anode independently. This gel cathode effectively traps the polysulfide active material while maintaining a low electrolyte to sulfur ratio of 5.2 mL g?1. The anolyte effectively protects the Li metal and suppresses the consumption of liquid electrolyte, enabling stable long‐term cycling for over 700 h in Li symmetric cells. This advanced design can simultaneously suppress the polysulfide shuttle, protect Li metal, and reduce the liquid electrolyte usage. The assembled hybrid batteries exhibit remarkably stable cycling performance over 300 cycles with high capacity. Finally, surface‐sensitive techniques are carried out to directly visualize and probe the interphase formed on the surface of the Li1.5Al0.5Ge1.5(PO4)3 (LAGP) pellet, which may help stabilize the solid–liquid interface.  相似文献   

6.
Lithium‐sulfur (Li‐S) batteries are one of the most promising next‐generation energy‐storage systems. Nevertheless, the sluggish sulfur redox and shuttle effect in Li‐S batteries are the major obstacles to their commercial application. Previous investigations on adsorption for LiPSs have made great progress but cannot restrain the shuttle effect. Catalysts can enhance the reaction kinetics, and then alleviate the shuttle effect. The synergistic relationship between adsorption and catalysis has become the hotspot for research into suppressing the shuttle effect and improving battery performance. Herein, the adsorption‐catalysis synergy in Li‐S batteries is reviewed, the adsorption‐catalysis designs are divided into four categories: adsorption‐catalysis for LiPSs aggregation, polythionate or thiosulfate generation, and sulfur radical formation, as well as other adsorption‐catalysis. Then advanced strategies, future perspectives, and challenges are proposed to aim at long‐life and high‐efficiency Li‐S batteries.  相似文献   

7.
8.
9.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

10.
Polysulfide dissolution into the electrolyte and poor electric conductivity of elemental sulfur are well‐known origins for capacity fading in lithium–sulfur batteries. Various smart electrode designs have lately been introduced to avoid these fading mechanisms, most of which demonstrate significantly improved cycle life. Nevertheless, an in‐depth understanding on the effect of sulfur microstructure and nanoscale electron transport near sulfur is currently lacking. In this study, the authors report an organized nanocomposite comprising linear sulfur chains and oleylamine‐functionalized reduced graphene oxide (O‐rGO) to achieve robust cycling performance (81.7% retention after 500 cycles) as well as to investigate the reaction mechanism in different regimes, i.e., S8 dissolution, polysulfide conversion, and Li2S formation. In the nanocomposite, linear sulfur chains terminate with 1,3‐diisopropylbenzene are covalently linked to O‐rGO. The comparison with control samples that do not contain either the capping of sulfur chains or O‐rGO reveals the synergistic interplay between both treatments, simultaneously unveiling the distinct roles of confined sulfur nanodomains and their adjoining electron pathways in different reaction regimes.  相似文献   

11.
Calcium represents a promising anode for the development of high‐energy‐density, low‐cost batteries. However, a lack of suitable electrolytes has restricted the development of rechargeable batteries with a Ca anode. Furthermore, to achieve a high energy density system, sulfur would be an ideal cathode to couple with the Ca anode. Unfortunately, a reversible calcium‐sulfur (Ca‐S) battery has not yet been reported. Herein, a basic study of a reversible nonaqueous room‐temperature Ca‐S battery is presented. The reversibility of the Ca‐S chemistry and high utilization of the sulfur cathode are enabled by employing a Li+‐ion‐mediated calcium‐based electrolyte. Mechanistic insights pursued by spectroscopic, electrochemical, microscopic, and theoretical simulation (density functional theory) investigations imply that the Li+‐ions in the Ca‐electrolyte stimulate the reactivation of polysulfide/sulfide species. The coordination of lithium to sulfur reduces the formation of sturdy Ca‐S ionic bonds, thus boosting the reversibility of the Ca‐S chemistry. In addition, the presence of Li+‐ions facilitates the ionic charge transfer both in the electrolyte and across the solid electrolyte interphase layer, consequently reducing the interfacial and bulk impedance of Ca‐S batteries. As a result, both the utilization of active sulfur in the cathode and the discharge voltage of Ca‐S batteries are significantly improved.  相似文献   

12.
13.
Lithium–sulfur (Li–S) batteries, due to the high theoretical energy density, are regarded as one of the most promising candidates for breaking the limitations of energy‐storage system based on Li‐ion batteries. Tremendous efforts have been made to meet the challenge of high‐performance Li–S batteries, in which a sulfur loading of above 5 mg cm?2 delivers an areal capacity higher than 5 mAh cm?2 without compromising specific capacity and cycling stability for practical applications. However, serious problems have been exposed during the scaling up of the sulfur loading. In this review, based on mechanistic insights into structural configuration, catalytic conversion, and interfacial engineering, the problems and corresponding strategies in the development of high‐loading Li–S batteries are highlighted and discussed, aiming at bridging the gap between fundamental research and practical cell‐level designs. Stemming from the current achievements, future directions targeting the high‐energy‐density Li–S batteries for commercialization are proposed.  相似文献   

14.
Lithium–sulfur (Li–S) batteries hold great promise as a next‐generation battery system because of their extremely high theoretical energy density and low cost. However, ready lithium polysulfide (LiPS) diffusion and sluggish redox kinetics hamper their cyclability and rate capability. Herein, porphyrin‐derived graphene‐based nanosheets (PNG) are proposed for Li–S batteries, which are achieved by pyrolyzing a conformal and thin layer of 2D porphyrin organic framework on graphene to form carbon nanosheets with a spatially engineered nitrogen‐dopant‐enriched skin and a highly conductive skeleton. The atomic skin is decorated with fully exposed lithiophilic sites to afford strong chemisorption to LiPSs and improve electrolyte wettability, while graphene substrate provides speedy electron transport to facilitate redox kinetics of sulfur species. The use of PNG as a lightweight interlayer enables efficient operation of Li–S batteries in terms of superb cycle stability (cyclic decay rate of 0.099% during 300 cycles at 0.5 C), good rate capability (988 mAh g?1 at 2.0 C), and impressive sulfur loading (areal capacity of 8.81 mAh cm?2 at a sulfur loading of 8.9 mg cm?2). The distinct interfacial strategy is expected to apply to other conversion reaction batteries relying on dissolution–precipitation mechanisms and requiring interfacial charge‐ and mass‐transport‐mediation concurrently.  相似文献   

15.
Lithium‐sulfur (Li‐S) batteries are considered to be one of the promising next‐generation energy storage systems. Considerable progress has been achieved in sulfur composite cathodes, but high cycling stability and discharging capacity at the expense of volumetric capacity have offset their advantages. Herein, a functional separator is presented by coating cobalt‐embedded nitrogen‐doped porous carbon nanosheets and graphene on one surface of a commercial polypropylene separator. The coating layer not only suppresses the polysulfide shuttle effect through chemical affinity, but also functions as an electrocatalyst to propel catalytic conversion of intercepted polysulfides. The slurry‐bladed carbon nanotubes/sulfur cathode with 90 wt% sulfur deliver high reversible capacity of 1103 mA h g?1 and volumetric capacity of 1062 mA h cm?3 at 0.2 C, and the freestanding carbon nanofibers/sulfur cathode provides a high discharging capacity of 1190 mA h g?1 and volumetric capacity of 1136 mA h cm?3 at high sulfur content of 78 wt% and sulfur loading of 10.5 mg cm?2. The electrochemical performance is comparable with or even superior to those in the state‐of‐the‐art carbon‐based sulfur cathodes. The separator reported in this work holds great promise for the development of high‐energy‐density Li‐S batteries.  相似文献   

16.
Rechargeable lithium–sulfur batteries have attracted tremendous scientific attention owing to their superior energy density. However, the sulfur electrochemistry involves multielectron redox reactions and complicated phase transformations, while the final morphology of solid‐phase Li2S precipitates largely dominate the battery's performance. Herein, a triple‐phase interface among electrolyte/CoSe2/G is proposed to afford strong chemisorption, high electrical conductivity, and superb electrocatalysis of polysulfide redox reactions in a working lithium–sulfur battery. The triple‐phase interface effectively enhances the kinetic behaviors of soluble lithium polysulfides and regulates the uniform nucleation and controllable growth of solid Li2S precipitates at large current density. Therefore, the cell with the CoSe2/G functional separator delivers an ultrahigh rate cycle at 6.0 C with an initial capacity of 916 mAh g?1 and a capacity retention of 459 mAh g?1 after 500 cycles, and a stable operation of high sulfur loading electrode (2.69–4.35 mg cm?2). This work opens up a new insight into the energy chemistry at interfaces to rationally regulate the electrochemical redox reactions, and also inspires the exploration of related energy storage and conversion systems based on multielectron redox reactions.  相似文献   

17.
18.
19.
One of the most challenging problems in the development of lithium–sulfur batteries is polysulfide dissolution, which leads to cell overcharge and low columbic efficiency. Here, we propose the formation of a thin conformal Li‐ion permeable oxide layer on the sulfur‐carbon composite electrode surface by rapid plasma enhanced atomic layer deposition (PEALD) in order to prevent this dissolution, while preserving electrical connectivity within the individual electrode particles. PEALD synthesis offers a fast deposition rate combined with a low operating temperature, which allows sulfur evaporation during deposition to be avoided. After PEALD of a thin layer of aluminium oxide on the surface of electrode composed of large (ca. 10 μm in diameter) S‐infiltrated activated carbon fibers (S‐ACF), significantly enhanced cycle life is observed, with a capacity in excess of 600 mA·h·g?1 after 300 charge–discharge cycles. Scanning electron microscopy (SEM) shows a significant amount of redeposited lithium sulfides on the external surface of regular S‐ACF electrodes. However, the PEALD alumina‐coated electrodes show no lithium sulfide deposits on the fiber surface. Energy dispersive spectroscopy (EDS) studies of the electrodes’ chemical composition further confirms that PEALD alumina coatings dramatically reduce S dissolution from the cathodes by confining the polysulfides inside the alumina barrier.  相似文献   

20.
Batteries with high energy and power densities along with long cycle life and acceptable safety at an affordable cost are critical for large‐scale applications such as electric vehicles and smart grids, but is challenging. Lithium–sulfur (Li‐S) batteries are attractive in this regard due to their high energy density and the abundance of sulfur, but several hurdles such as poor cycle life and inferior sulfur utilization need to be overcome for them to be commercially viable. Li–S cells with high capacity and long cycle life with a dual‐confined flexible cathode configuration by encapsulating sulfur in nitrogen‐doped double‐shelled hollow carbon spheres followed by graphene wrapping are presented here. Sulfur/polysulfides are effectively immobilized in the cathode through physical confinement by the hollow spheres with porous shells and graphene wrapping as well as chemical binding between heteronitrogen atoms and polysulfides. This rationally designed free‐standing nanostructured sulfur cathode provides a well‐built 3D carbon conductive network without requiring binders, enabling a high initial discharge capacity of 1360 mA h g?1 at a current rate of C/5, excellent rate capability of 600 mA h g?1 at 2 C rate, and sustainable cycling stability for 200 cycles with nearly 100% Coulombic efficiency, suggesting its great promise for advanced Li–S batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号