首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Light induced degradation has been observed in the performance of organic solar cells in the absence of oxygen and a detailed analysis of the effect of this photodegradation on optical and electrical features has been accomplished. This photodegradation study has been performed on encapsulated photovoltaic blend devices comprised of the silole‐based donor–acceptor polymer KP115 blended with [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM). Photodegradation induces an almost 20% decrease in power conversion efficiency, primarily as a result of a reduction in short circuit current, JSC. The initial burn‐in phase of the photodegradation has been examined using a combination of transient absorption spectroscopy and charge extraction measurements, including photo‐CELIV (charge extraction by linearly increasing voltage) and time‐resolved charge extraction using a nanosecond switch. These measurements reveal a bimodal KP115 polaron population, comprised of both delocalised and localised/trapped charge carriers. The photodegradation results are consistent with an alteration of this bimodal KP115 polaron population, with the polarons becoming trapped in a broader, deeper density of localised states. Under laser illumination and at open circuit conditions, this enhanced trapping after light soaking inhibits charges from undergoing bimolecular recombination, leading to higher extracted charge densities at long times. At the lower charge densities operating at short circuit conditions and under continuous white light illumination, where bimolecular recombination is much less significant, the JSC decreases after light soaking due to a reduction in the efficiency of trapped charge carrier extraction.  相似文献   

3.
Solvent effects on the morphology of diketopyrrolopyrrole (DPP)‐based low band gap polymer (PDPPBT):phenyl‐C71‐butyric acid methyl ester (PC71BM) blends are studied systematically using a mixture of a non‐aromatic polar primary solvent with high boiling point (b.p.) secondary solvents of increasing polarities. An unfavorable solvent‐PC71BM interaction, due to a polarity mismatch, leads to significantly different morphology, also affecting the growth process of polymer crystallites. Non‐aromatic polar solvent produces large PC71BM aggregates that increase in size with the addition of non‐polar secondary solvents. The size scales of the aggregates decrease markedly when polar solvents are instead used as the secondary solvents. This processing method fundamentally changes the behavior of phase separation, creating a percolated fibrillar type network structure. Moreover, polar secondary solvents with lower vapor pressures reduce the interfibrillar distances that enhance the device performance even more. Power conversion efficiencies (PCE) of 0.03% to 5% are obtained, depending on the solvent system used.  相似文献   

4.
The power conversion efficiency of poly(N‐(2‐ethylhexyl)‐3,6‐bis(4‐dodecyloxythiophen‐2‐yl)phthalimide) (PhBTEH)/fullerene bulk heterojunction solar cells improves from 0.43 to 4.1% by using a processing additive. The underlying mechanism for the almost 10‐fold enhancement in solar cell performance is found to be inhibition of fullerene intercalation into the polymer side chains and regulation of the relative crystallization/aggregation rates of the polymer and fullerene. An optimal interconnected two‐phase morphology with 15–20 nm domains is obtained when a processing additive is used compared with 100–300 nm domains without the additive. The results demonstrate that a processing additive provides an effective means of controlling both the fullerene intercalation in polymer/fullerene blends and the domain sizes of their phase‐separated nanoscale morphology.  相似文献   

5.
Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor–acceptor blends are studied, in which the number‐average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] ( PBDTT‐FTTE ) and a semicrystalline acceptor polymer, poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} ( P(NDI2OD‐T2) ) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in‐depth transmission electron microscopy, grazing incidence wide‐angle X‐ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse‐grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short‐circuit current density (Jsc) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.  相似文献   

6.
The microstructure of the polymer PBDTTT‐EFT and blends with the fullerene derivative PC71BM that achieve solar conversion efficiencies of over 9% is comprehensively investigated. A combination of synchrotron techniques are employed including surface‐sensitive near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy and bulk‐sensitive grazing‐incidence wide angle X‐ray scattering (GIWAXS). A preferential “face‐on” orientation of PBDTTT‐EFT is observed in the bulk of both pristine and blend thin films, with π–π stacking largely normal to the substrate, which is thought to be beneficial for charge transport. At the surface of the blend, a slight “edge‐on” structure of the polymer is observed with side‐chains aligned normal to the substrate. The effect of the solvent additive 1,8‐diiodooctane (DIO) on solar cell efficiency and film microstructure is also investigated, where the addition of 3 vol% DIO results in an efficiency increase from ≈6.4% to ≈9.5%. GIWAXS studies indicate that the addition of DIO improves the crystallization of the polymer. Furthermore, atomic force microscopy and transmission electron microscopy are employed to image surface and bulk morphology revealing that DIO suppresses the formation of large PC71BM aggregates.  相似文献   

7.
The photophysics of bulk heterojunctions of a high‐performance, low‐gap silicon‐bridged dithiophene polymer with oleic acid capped PbS quantum dots (QDs) are studied to assess the material potential for light harvesting in the visible‐ and IR‐light ranges. By employing a wide range of nanocrystal sizes, systematic dependences of electron and hole transfer on quantum‐dot size are established for the first time on a low‐gap polymer–dot system. The studied system exhibits type II band offsets for dot sizes up to ca. 4 nm, whch allow fast hole transfer from the quantum dots to the polymer that competes favorably with the intrinsic QD recombination. Electron transfer from the polymer is also observed although it is less competitive with the fast polymer exciton recombination for most QD sizes studied. The incorporation of a fullerene derivative provides efficient electron‐quenching sites that improve interfacial polymer‐exciton dissociation in ternary polymer–fullerene–QD blends. The study indicates that programmable band offsets that allow both electron and hole extraction can be produced for efficient light harvesting based on this low‐gap polymer‐PbS QD composite.  相似文献   

8.
A practical, low‐cost synthesis of hollow mesoporous organic polymer (HMOP) spheres is reported. The electrochemical properties of Li+/Na+‐electrolyte membranes with these spheres substituting for oxide filler particles in poly(ethylene oxide) (PEO)‐filler composite are explored. The electrolyte membranes are mechanically robust, thermally stable to over 250 °C, and block dendrites from a metallic‐lithium/sodium anode. The Li+/Na+ transfer impedance across the lithium/sodium–electrolyte interface is initially acceptable at 65 °C and scavenging of impurities by the porous‐spheres filler lowers this impedance relative to that with Al2O3. All‐solid‐state Li/LiFePO4 and Na/NaTi2(PO4)3 cells give stable discharge capacity of ≈130 and 80 mAh g?1, respectively, at 0.5 C and 65 °C for 100 cycles.  相似文献   

9.
The design of a sodium‐ion rechargeable battery with an antimony anode, a Na3V2(PO4)3 cathode, and a low‐cost composite gel‐polymer electrolyte based on cross‐linked poly(methyl methacrylate) is reported. The application of an antimony anode, on replacement of the sodium metal that is commonly used in sodium‐ion half‐cells, reduces significantly the interfacial resistance and charge transfer resistance of a sodium‐ion battery, which enables a smaller polarization for a sodium‐ion full‐cell Sb/Na3V2(PO4)3 running at relatively high charge and discharge rates. The incorporation of the gel‐polymer electrolyte is beneficial to maintain stable interfaces between the electrolyte and the electrodes of the sodium‐ion battery at elevated temperature. When running at 60 °C, the sodium‐ion full‐cell Sb/Na3V2(PO4)3 with the gel‐polymer electrolyte exhibits superior cycling stability compared to a battery with the conventional liquid electrolyte.  相似文献   

10.
11.
12.
The authors present efficient all‐polymer solar cells comprising two different low‐bandgap naphthalenediimide (NDI)‐based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near‐field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large‐scale phase‐separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donor–acceptor heterojunction.  相似文献   

13.
A high electron mobility polymer, poly{[N,N’‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5’‐(2,2’‐bithiophene) (P(NDI2OD‐T2)) is investigated for use as an electron acceptor in all‐polymer blends. Despite the high bulk electron mobility, near‐infrared absorption band and compatible energy levels, bulk heterojunction devices fabricated with poly(3‐hexylthiophene) (P3HT) as the electron donor exhibit power conversion efficiencies of only 0.2%. In order to understand this disappointing photovoltaic performance, systematic investigations of the photophysics, device physics and morphology of this system are performed. Ultra‐fast transient absorption spectroscopy reveals a two‐stage decay process with an initial rapid loss of photoinduced polarons, followed by a second slower decay. This second slower decay is similar to what is observed for efficient P3HT:PCBM ([6,6]‐phenyl C61‐butyric acid methyl ester) blends, however the initial fast decay that is absent in P3HT:PCBM blends suggests rapid, geminate recombination of charge pairs shortly after charge transfer. X‐ray microscopy reveals coarse phase separation of P3HT:P(NDI2OD‐T2) blends with domains of size 0.2 to 1 micrometer. P3HT photoluminescence, however, is still found to be efficiently quenched indicating intermixing within these mesoscale domains. This hierarchy of phase separation is consistent with the transient absorption, whereby localized confinement of charges on isolated chains in the matrix of the other polymer hinders the separation of interfacial electron‐hole pairs. These results indicate that local, interfacial processes are the key factor determining the overall efficiency of this system and highlight the need for improved morphological control in order for the potential benefit of high‐mobility electron accepting polymers to be realized.  相似文献   

14.
15.
The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐Cn on the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.  相似文献   

16.
17.
18.
Understanding the morphology of polymer‐based bulk heterojunction (BHJ) solar cells is necessary to improve device efficiencies. Blends of a low‐bandgap silole‐containing conjugated polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b;2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (PSBTBT) with [6,6]phenyl‐C61‐butyric acid methyl ester (PCBM) were investigated under different processing conditions. The surface morphologies and vertical segregation of the “As‐Spun”, “Pre‐Annealed”, and “Post‐Annealed” films were studied by scanning force microscopy, contact angle measurements, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, dynamic secondary ion mass spectrometry, and neutron reflectivity. The results showed that PSBTBT was enriched at the cathode interface in the “As‐Spun” films and thermal annealing increased the segregation of PSBTBT to the free surface, while thermal annealing after deposition of the cathode increased the PCBM concentration at the cathode interface. Grazing‐incidence X‐ray diffraction and small‐angle neutron scattering showed that the crystallization of PSBTBT and segregation of PCBM occurred during spin coating, and thermal annealing increased the ordering of PSBTBT and enhanced the segregation of the PCBM, forming domains ~10 nm in size, leading to an improvement in photovoltaic performance.  相似文献   

19.
The temperature‐dependent aggregation behavior of PffBT4T polymers used in organic solar cells plays a critical role in the formation of a favorable morphology in fullerene‐based devices. However, there is little investigation into the impact of donor/acceptor ratio on morphology tuning, especially for nonfullerene acceptors (NFAs). Herein, the influence of composition on morphology is reported for blends of PffBT4T‐2DT with two NFAs, O‐IDTBR and O‐IDFBR. The monotectic phase behavior inferred from differential scanning calorimetry provides qualitative insight into the interplay between solid–liquid and liquid–liquid demixing. Transient absorption spectroscopy suggests that geminate recombination dominates charge decay and that the decay rate is insensitive to composition, corroborated by negligible changes in open‐circuit voltage. Exciton lifetimes are also insensitive to composition, which is attributed to the signal being dominated by acceptor excitons which are formed and decay in domains of similar size and purity irrespective of composition. A hierarchical morphology is observed, where the composition dependence of size scales and scattering intensity from resonant soft X‐ray scattering (R‐SoXS) is dominated by variations in volume fractions of polymer/polymer‐rich domains. Results suggest an optimal morphology where polymer crystallite size and connectivity are balanced, ensuring a high probability of hole extraction via such domains.  相似文献   

20.
Tuning the blend composition is an essential step to optimize the power conversion efficiency (PCE) of organic bulk heterojunction (BHJ) solar cells. PCEs from devices of unoptimized donor:acceptor (D:A) weight ratio are generally significantly lower than optimized devices. Here, two high‐performance organic nonfullerene BHJ blends PBDB‐T:ITIC and PBDB‐T:N2200 are adopted to investigate the effect of blend ratio on device performance. It is found that the PCEs of polymer‐polymer (PBDB‐T:N2200) blend are more tolerant to composition changes, relative to polymer‐molecule (PBDB‐T:ITIC) devices. In both systems, short‐circuit current density (Jsc) is tracked closely with PCE, indicating that exciton dissociation and transport strongly influence PCEs. With dilute acceptor concentrations, polymer‐polymer blends maintain high electron mobility relative to the polymer‐molecule blends, which explains the dramatic difference in PCEs between them as a function of D:A blend ratio. In addition, polymer‐polymer solar cells, especially at high D:A blend ratio, are stable (less than 5% relative loss) over 70 d under continuous heating at 80 °C in a glovebox without encapsulation. This work demonstrates that all‐polymer solar cells show advantage in operational lifetime under thermal stress and blend‐ratio resilience, which indicates their high potential for designing of stable and scalable solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号