共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of Shortened Alkyl Chains on Solution‐Processable Small Molecules with Oxo‐Alkylated Nitrile End‐Capped Acceptors for High‐Performance Organic Solar Cells 下载免费PDF全文
Solution‐processable small molecules are significant for producing high‐performance bulk heterojunction organic solar cells (OSCs). Shortening alkyl chains, while ensuring proper miscibility with fullerene, enables modulation of molecular stacking, which is an effective method for improving device performance. Here, the design and synthesis of two solution‐processable small molecules based on a conjugated backbone with a novel end‐capped acceptor (oxo–alkylated nitrile) using octyl and hexyl chains attached to π–bridge, and octyl and pentyl chains attached to the acceptor is reported. Shortening the length of the widely used octyl chains improves self‐assembly and device performance. Differential scanning calorimetry and grazing incidence X‐ray diffraction results demonstrated that the molecule substituted by shorter chains shows tighter molecular stacking and higher crystallinity in the mixture with 6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and that the power conversion efficiency (PCE) of the OSC is as high as 5.6% with an open circuit voltage (Voc) of 0.87 V, a current density (Jsc) of 9.94 mA cm‐2, and an impressive filled factor (FF) of 65% in optimized devices. These findings provide valuable insights into the production of highly efficient solution‐processable small molecules for OSCs. 相似文献
2.
Harmonious Compatibility Dominates Influence of Side‐Chain Engineering on Morphology and Performance of Ternary Solar Cells 下载免费PDF全文
Tanya Kumari Sang Myeon Lee Kyu Cheol Lee Yongjoon Cho Changduk Yang 《Liver Transplantation》2018,8(22)
A growing number of recent studies have demonstrated the substantial impact of the alkyl side chains on the device performance of organic semiconductors. However, detailed investigation of the effect of side‐chain engineering on the blend morphology and performance of ternary organic solar cells (OSCs) has not yet been undertaken. In this study, the performance of ternary OSCs is investigated in a given poly(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PTB7‐Th:PC71BM) host set by introducing various small molecule donors (SMDs) with different terminal side‐chain lengths. As expected, the performance of binary OSCs with SMDs depends greatly on the side‐chain length. In contrast, it is observed that all SMD‐based ternary OSCs exhibit almost identical and high power‐conversion efficiencies of 12.0–12.2%. This minor performance variation is attributed to good molecular compatibility between the two donor components, as evidenced by in‐depth electrical and morphological investigations. These results highlight that the alloy‐like structure formed due to the high compatibility of the donor molecules has a more significant effect on the overall performance than the side‐chain length, offering a new guideline for pairing donor components for achieving high‐performance ternary OSCs. 相似文献
3.
Extended Conjugation Length of Nonfullerene Acceptors with Improved Planarity via Noncovalent Interactions for High‐Performance Organic Solar Cells 下载免费PDF全文
Dongxue Liu Bin Kan Xin Ke Nan Zheng Zengqi Xie Di Lu Yongsheng Liu 《Liver Transplantation》2018,8(26)
Three low‐bandgap nonfullerene acceptors (NFAs) IDTO‐T‐4F, IDTO‐Se‐4F, and IDTO‐TT‐4F with extended conjugation length are designed and synthesized. Various π‐spacers, thiophene, selenophene, and thieno[3,2‐b]thiophene are incorporated to extend the conjugated length and enhance the backbone planarity via noncovalent O···S or O···Se interactions. These NFAs exhibit strong light absorption in the range of 600–900 nm with narrow bandgaps between 1.38 and 1.45 eV. By blending with a wide‐bandgap donor material PBDB‐T, organic solar cells (OSCs) based on these NFAs all yield high efficiency over 10% with low energy losses ranging from 0.52 to 0.59 eV. Importantly, as a result of relatively high lowest unoccupied molecular orbital level, large hole and electron mobility in blend film, and low charge carrier recombination loss, optimized devices based on IDTO‐T‐4F exhibit a large open‐circuit voltage of 0.864 V, a high short‐circuit current density of 20.12 mA cm?2, and a notable fill factor of 72.7%, leading to an impressive efficiency of 12.62%, which represents the best performance for NFA OSCs using noncovalent interactions in acceptor molecule design. The results indicate that optimizing the conjugation length and backbone planarity via intramolecular noncovalent O···S or O···Se interactions is a useful strategy for NFA materials invention toward high‐performance solar cells. 相似文献
4.
Interplay Between Side Chain Pattern,Polymer Aggregation,and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk‐Heterojunction Solar Cells 下载免费PDF全文
Clare Dyer‐Smith Ian A. Howard Clément Cabanetos Abdulrahman El Labban Pierre M. Beaujuge Frédéric Laquai 《Liver Transplantation》2015,5(9)
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation. 相似文献
5.
Weijie Chen Dong Li Shanshan Chen Shuo Liu Yunxiu Shen Guang Zeng Xiaozhang Zhu Erjun Zhou Lin Jiang Yaowen Li Yongfang Li 《Liver Transplantation》2020,10(35)
All‐inorganic CsPbIBr2 perovskite solar cells (pero‐SCs) exhibit excellent overall stability, but their power conversion efficiencies (PCEs) are greatly limited by their wide bandgaps. Integrated solar cells (ISCs) are considered to be an emergent technology that could extend their photoresponse by directly stacking two distinct photoactive layers with complementary bandgaps. However, rising photocurrents always sacrifice other photovoltaic parameters, thereby leading to an unsatisfactory PCE. Here, a recast strategy is proposed to optimize the spatial distribution components of low‐bandgap organic bulk‐heterojunction (BHJ) film, and is combined with an all‐inorganic perovskite to construct perovskite/BHJ ISCs. With this strategy, the integrated perovskite/BHJ film with a top‐enriched donor‐material spatial distribution is shown to effectively improve ambipolar charge transport behavior and suppress charge carrier recombination. For the first time, the ISC is not only significantly extended and enhanced the photoresponse achieving a 20% increase in current density, but also exhibits a high open‐circuit voltage and fill factor at the same time. As a result, a record PCE of 11.08% based on CsPbIBr2 pero‐SCs is realized; it simultaneously shows excellent long‐term stability against heat and ultraviolet light. 相似文献
6.
7.
Ultrafast Charge Generation Pathways in Photovoltaic Blends Based on Novel Star‐Shaped Conjugated Molecules 下载免费PDF全文
Oleg V. Kozlov Yuriy N. Luponosov Sergei A. Ponomarenko Nina Kausch‐Busies Dmitry Yu Paraschuk Yoann Olivier David Beljonne Jérôme Cornil Maxim S. Pshenichnikov 《Liver Transplantation》2015,5(7)
The quest for new materials is one of the main factors propelling recent advances in organic photovoltaics. Star‐shaped small molecules (SSMs) have been proven promising candidates as perspective donor material due to the increase in numbers of excitation pathways caused by the degeneracy of the lowest unoccupied molecular orbital (LUMO) level. In order to unravel the pathways of the initial photon‐to‐charge conversion, the photovoltaic blends based on three different SSMs with a generic structure of N(phenylene‐nthiophene‐dicyanovinyl‐alkyl)3 (n = 1–3), and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) acceptor are investigated by ultrafast photoinduced absorption spectroscopy assisted by density functional theory calculations. It is shown that both electron transfer from SSMs to PC71BM and hole transfer from PC71BM to SSMs are equally significant for generation of long‐lived charges. In contrast, intramolecular (intra‐SSM) charge separation results in geminate recombination and therefore constitutes a loss channel. Overall, up to 60% of long‐lived separated charges are generated at the optimal PC71BM concentrations. The obtained results suggest that further improvement of the SSM‐based solar cells is feasible via optimization of blend morphology and by suppressing the intra‐SSM recombination channel. 相似文献
8.
Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye‐Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications 下载免费PDF全文
Sung Ho Kang Myung Jin Jeong Yu Kyung Eom In Taek Choi Seung Mo Kwon Youngjun Yoo Jeongho Kim Jeong Kwon Jong Hyeok Park Hwan Kyu Kim 《Liver Transplantation》2017,7(7)
Zn(II)–porphyrin sensitizers, coded as SGT‐020 and SGT‐021 , are designed and synthesized through donor structural engineering. The photovoltaic (PV) performances of SGT sensitizer‐based dye‐sensitized solar cells (DSSCs) are systematically evaluated in a thorough SM315 as a reference sensitizer. The effect of the donor ability and the donor bulkiness on photovoltaic performances is investigated for establishing the structure–performance relationship in the platform of porphyrin‐triple bond‐benzothiadiazole‐acceptor sensitizers. By introducing a more bulky fluorene unit to the amine group in the SM315 , the power conversion efficiency (PCE) is enhanced with the increased short‐circuit current (Jsc) and open‐circuit voltage (Voc), due to the improved light‐harvesting ability and the efficient prevention of charge recombination, respectively. As a consequence, a maximum PCE of 12.11% is obtained for SGT‐021 , whose PCE is much higher than the 11.70% PCE for SM315 . To further improve their maximum efficiency, the first parallel tandem DSSCs employing cobalt electrolyte in the top and bottom cells are demonstrated and an extremely high efficiency of 14% is achieved, which is currently the highest reported value for tandem DSSCs. The series tandem DSSCs give a remarkably high Voc value of >1.83 V. From this DSSC tandem configuration, 7.4% applied bias photon‐to‐current efficiency is achieved for solar water splitting. 相似文献
9.
Solar Cells: Ultrafast Charge Generation Pathways in Photovoltaic Blends Based on Novel Star‐Shaped Conjugated Molecules (Adv. Energy Mater. 7/2015) 下载免费PDF全文
Oleg V. Kozlov Yuriy N. Luponosov Sergei A. Ponomarenko Nina Kausch‐Busies Dmitry Yu Paraschuk Yoann Olivier David Beljonne Jérôme Cornil Maxim S. Pshenichnikov 《Liver Transplantation》2015,5(7)
10.
Alkyl Chain Regiochemistry of Benzotriazole‐Based Donor Polymers Influencing Morphology and Performances of Non‐Fullerene Organic Solar Cells 下载免费PDF全文
Shangshang Chen Lin Zhang Chao Ma Dong Meng Jianquan Zhang Guangye Zhang Zhengke Li Philip C. Y. Chow Wei Ma Zhaohui Wang Kam Sing Wong Harald Ade He Yan 《Liver Transplantation》2018,8(11)
The effects of alkyl chain regiochemistry on the properties of donor polymers and performances of non‐fullerene organic solar cells are investigated. Two donor polymers (PfBTAZ and PfBTAZS) are compared that have nearly identical chemical structures except for the regiochemistry of alkyl chains. The optical properties and crystallinity of two polymers are nearly identical yet the PfBTAZ:O‐IDTBR blend exhibits nearly double domain size compared to the blend based on PfBTAZS:O‐IDTBR. To reveal the origins of the very different domain size of two blends, the morphology of neat polymer films is characterized, and it is found that PfBTAZ tends to aggregate into much larger polymer fibers without the presence of O‐IDTBR. This indicates that it is not the polymer:O‐IDTBR interactions but the intrinsic aggregation properties of two polymers that determine the morphology features of neat and blend films. The stronger aggregation tendency of PfBTAZ could be explained by its more co‐planar geometry of the polymer backbone arising from the different alkyl chain regiochemistry. Combined with the similar trend observed in another set of donor polymers (PTFB‐P and PTFB‐PS), the results provide an important understanding of the structure–property relationships that could guide the development of donor polymers for non‐fullerene organic solar cells. 相似文献
11.
Feasible D1–A–D2–A Random Copolymers for Simultaneous High‐Performance Fullerene and Nonfullerene Solar Cells 下载免费PDF全文
Mingyu Jeong Shanshan Chen Sang Myeon Lee Zhiwei Wang Yankang Yang Zhi‐Guo Zhang Chunfeng Zhang Min Xiao Yongfang Li Changduk Yang 《Liver Transplantation》2018,8(7)
A series of PBDB‐TTn random donor copolymers is synthesized, consisting of an electron‐deficient benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (BDD) unit and different ratios of two electron‐rich benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,2‐b]thiophene (TT) units, with intention to modulate the intrachain and/or interchain interactions and ultimately bulk‐heterojunction morphology evolution. A comparative study using 4 × 2 polymer solar cell (PSC) performance maps and each of the [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and the fused‐aromatic‐ring‐based molecule (m‐ITIC) acceptors are carried out. Given the similarities in their absorption ranges and energy levels, the PBDB‐TTn copolymers clearly reveal a change in the absorption coefficients upon optimization of the BDT to TT ratio in the backbone. Among the given acceptor combination sets, superior performances are observed in the case of PBDB‐TT5 blended with PC71BM (8.34 ± 0.10%) or m‐ITIC (11.10 ± 0.08%), and the dominant factors causing power conversion efficiency differences in them are found to be distinctly different. For example, the performances of PC71BM‐based PSCs are governed by size and population of face‐on crystallites, while intermixed morphology without the formation of large phase‐separated aggregates is the key factor for achieving high‐performance m‐ITIC‐based PSCs. This study presents a new sketch of structure–morphology–performance relationships for fullerene‐ versus nonfullerene‐based PSCs. 相似文献
12.
Side‐Chain Engineering for Fine‐Tuning of Energy Levels and Nanoscale Morphology in Polymer Solar Cells 下载免费PDF全文
Jaewon Lee Min Kim Boseok Kang Sae Byeok Jo Heung Gyu Kim Jisoo Shin Kilwon Cho 《Liver Transplantation》2014,4(10)
A series of four polymers containing benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and 5,6‐difluoro‐4,7‐diiodobenzo[c][1,2,5]thiadiazole (2FBT), PBDT2FBT, PBDT2FBT‐O, PBDT2FBT‐T, and PBDT2FBT‐T‐O, are synthesized with their four different side chains, alkyl‐, alkoxy‐, alkylthienyl‐, and alkoxythienyl. Experimental results and theoretical calculations show that the molecular tuning of the side chains simultaneously influences the solubilities, energy levels, light absorption, surface tension, and intermolecular packing of the resulting polymers by altering their molecular coplanarity and electron affinity. The polymer solar cell (PSC) based on a blend of PBDT2FBT‐T/[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) exhibits the best photovoltaic performance of the four PBDT2FBT derivatives, with a high open‐circuit voltage of 0.98 V and a power conversion efficiency of 6.37%, without any processing additives, post‐treatments, or optical spacers. Furthermore, PBDT2FBT‐T‐O, which has a novel side chain alkoxythienyl, showed promising properties with the most red‐shifted absorption and strong intermolecular packing property in solid state. This study provides insight into molecular design and fabrication strategies via structural tuning of the side chains of conjugated polymers for achieving highly efficient PSCs. 相似文献
13.
Solution‐Processable Conjugated Polymers as Anode Interfacial Layer Materials for Organic Solar Cells 下载免费PDF全文
In recent years, solution‐processed conjugated polymers have been extensively used as anode interfacial layer (AIL) materials in organic solar cells (OSCs) due to their excellent film‐forming property and low‐temperature processing advantages. In this review, the authors focus on the recent advances in conjugated polymers as AIL materials in OSCs. Several of the main classes of solution‐processable conjugated polymers, including poly(3,4‐ethylenedioxythiophene):(styrenesulfonate), polyaniline, polythiophene, conjugated polyelectrolytes, sulfonated poly(diphenylamine), and crosslinked polymers as AIL materials are discussed in depth, and the mechanisms of these AIL materials in enhancing OSC performances are also elucidated. The structure–property relationships of various conjugated polymer AIL materials are analyzed, and some important design rules for such materials toward high efficiencies and stable OSCs are presented. In addition, some chemical and physical approaches to optimize the photoelectronic and physic properties of conjugated polymer AIL materials, which improve their performance in modifying OSCs, are also highlighted. Considering the significance of tandem OSCs, the relevant applications of conjugated polymer AIL materials in constructing interconnection layers for tandem OSCs are also mentioned. Finally, a brief summary is presented and some perspectives to help researchers understand the current challenges and opportunities in this area are proposed. 相似文献
14.
15.
16.
17.
18.
Side‐Chain Engineering for Enhancing the Properties of Small Molecule Solar Cells: A Trade‐off Beyond Efficiency 下载免费PDF全文
Jie Min Chaohua Cui Thomas Heumueller Stefanie Fladischer Xiao Cheng Erdmann Spiecker Yongfang Li Christoph J. Brabec 《Liver Transplantation》2016,6(14)
Three small molecules with different substituents on bithienyl‐benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) units, BDTT‐TR (meta‐alkyl side chain), BDTT‐O‐TR (meta‐alkoxy), and BDTT‐S‐TR (meta‐alkylthio), are designed and synthesized for systematically elucidating their structure–property relationship in solution‐processed bulk heterojunction organic solar cells. Although all three molecules show similar molecular structures, thermal properties and optical band gaps, the introduction of meta‐alkylthio‐BDTT as the central unit in the molecular backbone substantially results in a higher absorption coefficient, slightly lower highest occupied molecular orbital level and significantly more efficient and balanced charge transport property. The bridging atom in the meta‐position to the side chain is found to impact the microstructure formation which is a subtle but decisive way: carrier recombination is suppressed due to a more balanced carrier mobility and BDTT based devices with the meta‐alkylthio side chain (BDTT‐S‐TR) show a higher power conversion efficiency (PCE of 9.20%) as compared to the meta‐alkoxy (PCE of 7.44% for BDTT‐TR) and meta‐alkyl spacer (PCE of 6.50% for BDTT‐O‐TR). Density functional density calculations suggest only small variations in the torsion angle of the side chains, but the nature of the side chain linkage is further found to impact the thermal as well as the photostability of corresponding devices. The aim is to provide comprehensive insight into fine‐tuning the structure–property interrelationship of the BDTT material class as a function of side chain engineering. 相似文献
19.
Balanced Carrier Mobilities: Not a Necessary Condition for High‐Efficiency Thin Organic Solar Cells as Determined by MIS‐CELIV 下载免费PDF全文
Ardalan Armin Gytis Juska Mujeeb Ullah Marappan Velusamy Paul L. Burn Paul Meredith Almantas Pivrikas 《Liver Transplantation》2014,4(4)
A novel technique based upon injection‐charge extraction by linearly increasing voltage (i‐CELIV) in a metal‐insulator‐semiconductor (MIS) diode structure is described for studying charge transport in organic semiconductors. The technique (MIS‐CELIV) allows selective measurement of both electron and hole mobilities of organic solar cells with active layers thicknesses representative of operational devices. The method is used to study the model high efficiency bulk heterojunction combination poly[N‐9′′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) and [6,6]‐phenyl C70‐butyric acid methyl ester (PC70BM) at various blend ratios. The absence of bipolar transport in PCDTBT‐and‐PC70BM‐only diodes is shown and strongly imbalanced carrier mobility is found in the most efficient “optimized” blend ratios. The mobility measurements are correlated with overall device performance and it is found that balanced and high charge carrier mobility are not necessarily required for high efficiencies in thin film organic solar cells. 相似文献
20.
Il Jeon Jungjin Yoon Unsoo Kim Changsoo Lee Rong Xiang Ahmed Shawky Jun Xi Junseop Byeon Hyuck Mo Lee Mansoo Choi Shigeo Maruyama Yutaka Matsuo 《Liver Transplantation》2019,9(27)
Double‐walled carbon nanotubes are between single‐walled carbon nanotubes and multiwalled carbon nanotubes. They are comparable to single‐walled carbon nanotubes with respect to the light optical density, but their mechanical stability and solubility are higher. Exploiting such advantages, solution‐processed transparent electrodes are demonstrated using double‐walled carbon nanotubes and their application to perovskite solar cells is also demonstrated. Perovskite solar cells which harvest clean solar power have attracted a lot of attention as a next‐generation renewable energy source. However, their eco‐friendliness, cost, and flexibility are limited by the use of transparent oxide conductors, which are inflexible, difficult to fabricate, and made up of expensive rare metals. Solution‐processed double‐walled carbon nanotubes can replace conventional transparent electrodes to resolve such issues. Perovskite solar cells using the double‐walled carbon nanotube transparent electrodes produce an operating power conversion efficiency of 17.2% without hysteresis. As the first solution‐processed electrode‐based perovskite solar cells, this work will pave the pathway to the large‐size, low‐cost, and eco‐friendly solar devices. 相似文献