共查询到20条相似文献,搜索用时 15 毫秒
1.
All‐Oxide MoOx/SnOx Charge Recombination Interconnects for Inverted Organic Tandem Solar Cells 下载免费PDF全文
Tim Becker Sara Trost Andreas Behrendt Ivan Shutsko Andreas Polywka Patrick Görrn Philip Reckers Chittaranjan Das Thomas Mayer Dario Di Carlo Rasi Koen H. Hendriks Martijn M. Wienk René A. J. Janssen Thomas Riedl 《Liver Transplantation》2018,8(10)
Multijunction solar cells are designed to improve the overlap with the solar spectrum and to minimize losses due to thermalization. Aside from the optimum choice of photoactive materials for the respective sub‐cells, a proper interconnect is essential. This study demonstrates a novel all‐oxide interconnect based on the interface of the high‐work‐function (WF) metal oxide MoOx and low‐WF tin oxide (SnOx). In contrast to typical p‐/n‐type tunnel junctions, both the oxides are n‐type semiconductors with a WF of 5.2 and 4.2 eV, respectively. It is demonstrated that the electronic line‐up at the interface of MoOx and SnOx comprises a large intrinsic interface dipole (≈0.8 eV), which is key to afford ideal alignment of the conduction band of MoOx and SnOx, without the requirement of an additional metal or organic dipole layer. The presented MoOx/SnOx interconnect allows for the ideal (loss‐free) addition of the open circuit voltages of the two sub‐cells. 相似文献
2.
3.
4.
8.9% Single‐Stack Inverted Polymer Solar Cells with Electron‐Rich Polymer Nanolayer‐Modified Inorganic Electron‐Collecting Buffer Layers 下载免费PDF全文
Sungho Woo Wook Hyun Kim Hwajeong Kim Yeonjin Yi Hong‐Kun Lyu Youngkyoo Kim 《Liver Transplantation》2014,4(7)
Enhanced power conversion efficiency (PCE) is reported in inverted polymer solar cells when an electron‐rich polymer nanolayer (poly(ethyleneimine) (PEI)) is placed on the surface of an electron‐collecting buffer layer (ZnO). The active layer is made with bulk heterojunction films of poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The thickness of the PEI nanolayer is controlled to be 2 nm to minimize its insulating effect, which is confirmed by X‐ray photoelectron spectroscopy and optical absorption measurements. The Kelvin probe and ultraviolet photoelectron spectroscopy measurements demonstrate that the enhanced PCE by introducing the PEI nanolayer is attributed to the lowered conduction band energy of the ZnO layer via the formation of an interfacial dipole layer at the interfaces between the ZnO layer and the PEI nanolayer. The PEI nanolayer also improves the surface roughness of the ZnO layer so that the device series resistance can be noticeably decreased. As a result, all solar cell parameters including short circuit current density, open circuit voltage, fill factor, and shunt resistance are improved, leading to the PCE increase up to ≈8.9%, which is close to the best PCE reported using conjugated polymer electrolyte films. 相似文献
5.
6.
7.
8.
Polymer Solar Cells: Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solution‐Processed Al‐Doped ZnO Electron Transporting Layer (Adv. Energy Mater. 12/2015) 下载免费PDF全文
Lethy Krishnan Jagadamma Mohammed Al‐Senani Abdulrahman El‐Labban Issam Gereige Guy O. Ngongang Ndjawa Jorge C. D. Faria Taesoo Kim Kui Zhao Federico Cruciani Dalaver H. Anjum Martyn A. McLachlan Pierre M. Beaujuge Aram Amassian 《Liver Transplantation》2015,5(12)
9.
Enhanced Device Efficiency of Bilayered Inverted Organic Solar Cells Based on Photocurable P3HTs with a Light‐Harvesting ZnO Nanorod Array 下载免费PDF全文
Sehwan Kim Joo Hwan Koh Xu Yang Won Seok Chi Chihyun Park Jung Woo Leem Byeonggwan Kim Seogjae Seo Yuna Kim Jae Su Yu Jong Hak Kim Eunkyoung Kim 《Liver Transplantation》2014,4(6)
Periodically patterned zinc oxide nanorod (P‐ZnO NR) layers are directly prepared from a pre‐patterned ZnO seed layer using a polydimethylsiloxane (PDMS) elastomeric stamp and then applied in inverted organic photovoltaic devices (IOPVs). The IOPV is assembled with a hydrothermally grown zinc oxide nanorod patterns with a (100) preferential crystal orientation as an electron transport buffer layer (ETBL) and photoactive bilayer consisting of methacylate end‐functionalized poly(3‐hexylthiophene) (P3HT‐MA), phenyl‐C60‐butyric acid methyl ester (PC60BM) and indene‐C60 bis‐adduct (IC60BA). In te IOPVs, the P‐ZnO NR is found to induce efficient light harvesting and the photocrosslinkable P3HTs afford solution‐processed bilayer architecture in IOPVs to show improved device stability and performance (PCEmax= 5.95%), as the bilayered structure allowed direct exciton splitting, thus reducing the charge recombination. 相似文献
10.
11.
Sara Trost Kirill Zilberberg Andreas Behrendt Andreas Polywka Patrick Görrn Philip Reckers Julia Maibach Thomas Mayer Thomas Riedl 《Liver Transplantation》2013,3(11):1437-1444
A common phenomenon of organic solar cells (OSCs) incorporating metal‐oxide electron extraction layers is the requirement to expose the devices to UV light in order to improve device characteristics – known as the so‐called “light‐soaking” issue. This behaviour appears to be of general validity for various metal‐oxide layers, various organic donor/acceptor systems, and regardless if single junction devices or multi stacked cells are considered. The requirement of UV exposure of OSCs may impose severe problems if substrates with limited UV transmission, UV blocking filters or UV to VIS down‐conversion concepts are applied. In this paper, we will demonstrate that this issue can be overcome by the use of Al doped ZnO (AZO) as electron extraction interlayer. In contrast to devices based on TiOx and ZnO, the AZO devices show well‐behaved solar cell characteristics with a high fill factor (FF) and power conversion efficiency (PCE) even without the UV spectral components of the AM1.5 solar spectrum. As opposed to previous claims, our results indicate that the origin of s‐shaped characteristics of the OSCs is the metal‐oxide/organic interface. The electronic structures of the TiOx/fullerene and AZO/fullerene interfaces are studied by photoelectron spectroscopy, revealing an electron extraction barrier for the TiOx/fullerene case and facilitated electron extraction for AZO/fullerene. These results are of general relevance for organic solar cells based on various donor acceptor active systems. 相似文献
12.
Improving the Performance and Stability of Inverted Planar Flexible Perovskite Solar Cells Employing a Novel NDI‐Based Polymer as the Electron Transport Layer 下载免费PDF全文
Hong Il Kim Myeong‐Jong Kim Kyoungwon Choi Chaesung Lim Yun‐Hi Kim Soon‐Ki Kwon Taiho Park 《Liver Transplantation》2018,8(16)
A new naphthalene diimide (NDI)‐based polymer with strong electron withdrawing dicyanothiophene (P(NDI2DT‐TTCN)) is developed as the electron transport layer (ETL) in place of the fullerene‐based ETL in inverted perovskite solar cells (Pero‐SCs). A combination of characterization techniques, including atomic force microscopy, scanning electron microscopy, grazing‐incidence wide‐angle X‐ray scattering, near‐edge X‐ray absorption fine‐structure spectroscopy, space‐charge‐limited current, electrochemical impedance spectroscopy, photoluminescence (PL), and time‐resolved PL decay, is used to demonstrate the interface phenomena between perovskite and P(NDI2DT‐TTCN) or [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). It is found that P(NDI2DT‐TTCN) not only improves the electron extraction ability but also prevents ambient condition interference by forming a hydrophobic ETL surface. In addition, P(NDI2DT‐TTCN) has excellent mechanical stability compared to PCBM in flexible Pero‐SCs. With these improved functionalities, the performance of devices based on P(NDI2DT‐TTCN) significantly outperform those based on PCBM from 14.3 to 17.0%, which is the highest photovoltaic performance with negligible hysteresis in the field of polymeric ETLs. 相似文献
13.
14.
Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solution‐Processed Al‐Doped ZnO Electron Transporting Layer 下载免费PDF全文
Lethy Krishnan Jagadamma Mohammed Al‐Senani Abdulrahman El‐Labban Issam Gereige Guy O. Ngongang Ndjawa Jorge C. D. Faria Taesoo Kim Kui Zhao Federico Cruciani Dalaver H. Anjum Martyn A. McLachlan Pierre M. Beaujuge Aram Amassian 《Liver Transplantation》2015,5(12)
A facile and low‐temperature (125 °C) solution‐processed Al‐doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates is described. The ammonia‐treatment of the aqueous AZO nanoparticle solution produces compact, crystalline, and smooth thin films, which retain the aluminum doping, and eliminates/reduces the native defects by nitrogen incorporation, making them good electron transporters and energetically matched with the fullerene acceptor. It is demonstrated that highly efficient solar cells can be achieved without the need for additional surface chemical modifications of the buffer layer, which is a common requirement for many metal oxide buffer layers to yield efficient solar cells. Also highly efficient solar cells are achieved with thick AZO films (>50 nm), highlighting the suitability of this material for roll‐to‐roll coating. Preliminary results on the applicability of AZO as electron injection layer in F8BT‐based polymer light emitting diode are also presented. 相似文献
15.
He Wang Manas Shah Venkat Ganesan Michael L. Chabinyc Yueh‐Lin Loo 《Liver Transplantation》2012,2(12):1447-1455
The systematic insertion of thin films of P3HT and PCBM at the electron‐ and hole‐collecting interfaces, respectively, in bulk‐heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron‐collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole‐collecting interface. This asymmetry is attributed to differences in the tail state‐assisted charge injection and recombination at the active layer‐electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron‐collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk‐heterojunction solar cells. 相似文献
16.
17.
From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation,Charge Separation,and Extraction in Bulk Heterojunction Solar Cells with Fluorine‐Substituted Polymer Donors 下载免费PDF全文
Julien Gorenflot Andreas Paulke Fortunato Piersimoni Jannic Wolf Zhipeng Kan Federico Cruciani Abdulrahman El Labban Dieter Neher Pierre M. Beaujuge Frédéric Laquai 《Liver Transplantation》2018,8(4)
An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time‐delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two‐pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device‐relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide‐bandgap donor polymers: poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)‐state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM. 相似文献
18.
Quantum Dots: Enhanced Photovoltaic Performance of Inverted Polymer Solar Cells Utilizing Multifunctional Quantum‐Dot Monolayers (Adv. Energy Mater. 2/2015) 下载免费PDF全文
Byung Joon Moon Sungjae Cho Kyu Seung Lee Sukang Bae Sanghyun Lee Jun Yeon Hwang Basavaraj Angadi Yeonjin Yi Min Park Dong Ick Son 《Liver Transplantation》2015,5(2)
19.
20.
High‐Efficiency Polymer Homo‐Tandem Solar Cells with Carbon Quantum‐Dot‐Doped Tunnel Junction Intermediate Layer 下载免费PDF全文
Rakwon Kang Sujung Park Yun Kyung Jung Dong Chan Lim Myung Joo Cha Jung Hwa Seo Shinuk Cho 《Liver Transplantation》2018,8(10)
The tunnel junction (TJ) intermediate connection layer (ICL), which is the most critical component for high‐efficient tandem solar cell, generally consists of hole conducting layer and polyethyleneimine (PEI) polyelectrolyte. However, because of the nonconducting feature of pristine PEI, photocurrent is open‐restricted in ICL even with a little thick PEI layer. Here, high‐efficiency homo‐tandem solar cells are demonstrated with enhanced efficiency by introducing carbon quantum dot (CQD)‐doped PEI on TJ–ICL. The CQD‐doped PEI provides substantial dynamic advantages in the operation of both single‐junction solar cells and homo‐tandem solar cells. The inclusion of CQDs in the PEI layer leads to improved electron extraction property in single‐junction solar cells and better series connection in tandem solar cells. The highest efficient solar cell with CQD‐doped PEI layer in between indium tin oxide (ITO) and photoactive layer exhibits a maximum power conversion efficiency (PCE) of 9.49%, which represents a value nearly 10% higher than those of solar cells with pristine PEI layer. In the case of tandem solar cells, the highest performing tandem solar cell fabricated with C‐dot‐doped PEI layer in ICL yields a PCE of 12.13%; this value represents an ≈15% increase in the efficiency compared with tandem solar cells with a pristine PEI layer. 相似文献