首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Facile control over the morphology of phase pure tin monosulfide (SnS) thin films, a promising future absorber for thin film solar cells, is enabled by controlling the growth kinetics in vapor transport deposition of congruently evaporated SnS. The pressure during growth is found to be a key factor in modifying the final shape of the SnS grains. The optimized cube‐like SnS shows p‐type with the apparent carrier concentration of ≈1017 cm?3 with an optical bandgap of 1.32 eV. The dense and flat surface morphology of 1 µm thick SnS combined with the minimization of pinholes directly leads to improved diode quality and increased shunt resistance of the SnS/CdS heterojunction (cell area of 0.30 cm2). An open‐circuit voltage of up to 0.3068 V is achieved, which is independently characterized at the Korea Institute of Energy Research (KIER). Detailed high‐resolution transmission electron microscopy analysis confirms the absence of detrimental secondary phases such as Sn2S3 or SnS2 in the SnS grains or at intergrain boundaries. The initial efficiency level of 98.5% is maintained even after six months of storage in air, and the final efficiency of the champion SnS/CdS cell, certified at the KIER, is 2.938% with an open‐circuit voltage of 0.2912 V.  相似文献   

2.
3.
Thin film solar cells made from earth‐abundant, non‐toxic materials are needed to replace the current technology that uses Cu(In,Ga)(S,Se)2 and CdTe, which contain scarce and toxic elements. One promising candidate absorber material is tin monosulfide (SnS). In this report, pure, stoichiometric, single‐phase SnS films were obtained by atomic layer deposition (ALD) using the reaction of bis(N,N′‐diisopropylacetamidinato)tin(II) [Sn(MeC(N‐iPr)2)2] and hydrogen sulfide (H2S) at low temperatures (100 to 200 °C). The direct optical band gap of SnS is around 1.3 eV and strong optical absorption (α > 104 cm?1) is observed throughout the visible and near‐infrared spectral regions. The films are p‐type semiconductors with carrier concentration on the order of 1016 cm?3 and hole mobility 0.82–15.3 cm2V?1s?1 in the plane of the films. The electrical properties are anisotropic, with three times higher mobility in the direction through the film, compared to the in‐plane direction.  相似文献   

4.
Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm2. Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices.  相似文献   

5.
Kesterite‐type Cu2ZnSn(S,Se)4 has been extensively studied over the past several years, with researchers searching for promising candidates for indium‐ and gallium‐free inexpensive absorbers in high‐efficiency thin‐film solar cells. Many notable experimental and theoretical studies have dealt with the effects of intrinsic point defects, Cu/Zn/Sn nonstoichiometry, and cation impurities on cell performance. However, there have been few systematic investigations elucidating the distribution of oxygen at an atomic scale and the correlation between oxygen substitution and charge transport despite unavoidable incorporation of oxygen from the ambient atmosphere during thin‐film fabrication. Using energy‐dispersive X‐ray spectroscopy, scanning transmission electron microscopy, and electron energy‐loss spectroscopy, the presence of nanoscale layers is directly demonstrated in which oxygen is substantially substituted for Se, near grain boundaries in polycrystalline Cu2ZnSnSe4 films. Density‐functional theory calculations also show that oxygen substitution remarkably lowers the valence band maximum and subsequently widens the overall bandgap. Consequently, anion modification by oxygen can make a major contribution to the formation of a robust barrier blocking the holes from bulk grains into grain boundaries, thereby efficiently attaining electron?hole separation. The findings provide crucial insights into achieving better energy conversion efficiency in kesterite‐based thin‐film solar cells through optimum control of oxidation during the fabrication process.  相似文献   

6.
Fabrication of efficient Pb reduced inorganic CsPbI2Br perovskite solar cells (PSC) are an important part of environment‐friendly perovskite technology. In this work, 10% Pb reduction in CsPb0.9Zn0.1I2Br promotes the efficiency of PSCs to 13.6% (AM1.5, 1sun), much higher than the 11.8% of the pure CsPbI2Br solar cell. Zn2+ has stronger interaction with the anions to manipulate crystal growth, resulting in size‐enlarged crystallite with enhanced growth orientation. Moreover, the grain boundaries (GBs) are passivated by the Cs‐Zn‐I/Br compound. The high quality CsPb0.9Zn0.1I2Br greatly diminishes the GB trap states and facilitates the charge transport. Furthermore, the Zn4s‐I5p states slightly reduce the energy bandgap, accounting for the wider solar spectrum absorption. Both the crystalline morphology and energy state change benefit the device performance. This work highlights a nontoxic and stable Pb reduction method to achieve efficient inorganic PSCs.  相似文献   

7.
Tin sulfide (SnS) is one of the most promising solar cell materials, as it is abundant, environment friendly, available at low cost, and offers long‐term stability. However, the highest efficiency of the SnS solar cell reported so far remains at 4.36% even using the expensive atomic layer deposition process. This study reports on the fabrication of SnS solar cells by a solution process that employs rapid thermal treatment for few seconds under Ar gas flow after spin‐coating a precursor solution of SnCl2 and thiourea dissolved in dimethylformamide onto a nanostructured thin TiO2 electrode. The best‐performing cell exhibits power conversion efficiency (PCE) of 3.8% under 1 sun radiation conditions (AM1.5G). Moreover, secondary treatment using SnCl2 results in a significant improvement of 4.8% in PCE, which is one of the highest efficiencies among SnS‐based solar cells, especially with TiO2 electrodes. The thin film properties of SnS after SnCl2 secondary treatment are analyzed using grazing‐incidence wide‐angle X‐ray scattering, and high‐resolution transmittance electron microscopy.  相似文献   

8.
The performance of perovskite solar cells is sensitive to detrimental defects, which are prone to accumulate at the interfaces and grain boundaries of bulk perovskite films. Defect passivation at each region will lead to reduced trap density and thus less nonradiative recombination loss. However, it is challenging to passivate defects at both the grain boundaries and the bottom charge transport layer/perovskite interface, mainly due to the solvent incompatibility and complexity in perovskite formation. Here SnO2‐KCl composite electron transport layer (ETL) is utilized in planar perovskite solar cells to simultaneously passivate the defects at the ETL/perovskite interface and the grain boundaries of perovskite film. The K and Cl ions at the ETL/perovskite interface passivate the ETL/perovskite contact. Meanwhile, K ions from the ETL can diffuse through the perovskite film and passivate the grain boundaries. An enhancement of open‐circuit voltage from 1.077 to 1.137 V and a corresponding power conversion efficiency increasing from 20.2% to 22.2% are achieved for the devices using SnO2‐KCl composite ETL. The composite ETL strategy reported herein provides an avenue for defect passivation to further increase the efficiency of perovskite solar cells.  相似文献   

9.
CdTe solar cells have reached efficiencies comparable to multicrystalline silicon and produce electricity at costs competitive with traditional energy sources. Recent efficiency gains have come partly from shifting from the traditional CdS window layer to new materials such as CdSe and MgZnO, yet substantial headroom still exists to improve performance. Thin film technologies including Cu(In,Ga)Se2, perovskites, Cu2ZnSn(S,Se)4, and CdTe inherently have many grain boundaries that can form recombination centers and impede carrier transport; however, grain boundary engineering has been difficult and not practical. In this work, it is demonstrated that wide columnar grains reaching through the entire CdTe layer can be achieved by aggressive postdeposition CdTe recrystallization. This reduces the grain structure constraints imposed by nucleation on nanocrystalline window layers and enables diverse window layers to be selected for other properties critical for electro‐optical applications. Computational simulations indicate that increasing grain size from 1 to 7 µm can be equivalent to decreasing grain‐boundary recombination velocity by three orders of magnitude. Here, large high‐quality grains enable CdTe lifetimes exceeding 50 ns.  相似文献   

10.
Organic solar cells are promising in terms of full‐solution‐processing which enables low‐cost and large‐scale fabrication. While single‐junction solar cells have seen a boost in power conversion efficiency (PCE), multi‐junction solar cells are promising to further enhance the PCE. In all‐solution‐processed multi‐junction solar cells, interfacial losses are often encountered between hole‐transporting layer (HTL) and the active layers and therefore greatly limit the application of newly developed high‐performance donor and acceptor materials in multi‐junction solar cells. Here, the authors report on a systematic study of interface losses in both single‐junction and multi‐junction solar cells based on representative polymer donors and HTLs using electron spectroscopy and time‐of‐flight secondary ion mass spectrometry. It is found that a facile mixed HTL containing poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and MoO x nanoparticles successfully overcomes the interfacial losses in both single‐ and multi‐junction solar cells based on various active layers by reducing interface protonation, promoting better energy‐level alignment, and forming a dense and smooth layer. Solution‐processed single‐junction solar cells are demonstrated to reach the same performance as with evaporated MoO x (over 7%). Multi‐junction solar cells with polymers containing nitrogen atoms as the first layer and the mixed PEDOT:PSS and MoO x nanoparticles as hole extraction layer reach fill factor (FF) of over 60%, and PCE of over 8%, while the identical stack with pristine PEDOT:PSS or MoO x nanoparticles show FF smaller than 50% and PCE less than 5%.  相似文献   

11.
Earth‐abundant Cu2BaSnS4 (CBTS) thin films exhibit a wide bandgap of 2.04–2.07 eV, a high absorption coefficient > 104 cm?1, and a p‐type conductivity, suitable as a top‐cell absorber in tandem solar cell devices. In this work, sputtered oxygenated CdS (CdS:O) buffer layers are demonstrated to create a good p–n diode with CBTS and enable high open‐circuit voltages of 0.9–1.1 V by minimizing interface recombination. The best power conversion efficiency of 2.03% is reached under AM 1.5G illumination based on the configuration of fluorine‐doped SnO2 (back contact)/CBTS/CdS:O/CdS/ZnO/aluminum‐doped ZnO (front contact).  相似文献   

12.
The design and performance of solar cells based on InP grown by the nonepitaxial thin‐film vapor–liquid–solid (TF‐VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p‐InP absorber layer, n‐TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p‐doping process for TF‐VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open‐circuit voltage (VOC) of 692 mV, short‐circuit current (JSC) of 26.9 mA cm?2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p‐InP.  相似文献   

13.
Efficient sunlight‐driven water splitting devices can be achieved by pairing two absorbers of different optimized bandgaps in an optical tandem design. With tunable absorption ranges and cell voltages, organic–inorganic metal halide perovskite solar cells provide new opportunities for tailoring top absorbers for such devices. In this work, semitransparent perovskite solar cells are developed for use as the top cell in tandem with a smaller bandgap photocathode to enable panchromatic harvesting of the solar spectrum. A new CuInxGa1‐xSe2 multilayer photocathode is designed, exhibiting excellent performance for photoelectrochemical water reduction and representing a near‐ideal bottom absorber. When pairing it below a semitransparent CH3NH3PbBr3‐based solar cell, a solar‐to‐hydrogen efficiency exceeding 6% is achieved, the highest value yet reported for a photovoltaic–photoelectrochemical device utilizing a single‐junction solar cell as the bias source under one sun illumination. The analysis shows that the efficiency can reach more than 20% through further optimization of the perovskite top absorber.  相似文献   

14.
Cd‐free Cu(In,Ga)(S,Se)2 (CIGSSe) solar cells are fabricated by an all‐dry process (a Cd‐free and all‐dry process CIGSSe solar cell) with aged CIGSSe thin film absorbers. The aged CIGSSe thin films are kept in a desiccator cabinet under partial pressure of oxygen of ≈200 Pa for aging time up to 10 months. It is reported for the first time that aged CIGSSe thin film with increased aging time results in significant enhancement of photovoltaic performance of Cd‐free and all‐dry process CIGSSe solar cells, regardless of the alkali treatment. Based on carrier recombination analysis, carrier recombination rates at the interface and in the depletion region of the Cd‐free and all‐dry process CIGSSe solar cells are reduced owing to avoidance of sputtering damage on CIGSSe absorber surface, which is consistent with the strong electron beam‐induced current signal near CIGSSe surface after the increased aging time. It is implied that the interface and near‐surface qualities are clearly improved through the increased aging time, which is attributable to the self‐forming of Inx(O,S)y near CIGSSe surface, which acts as a buffer layer. Ultimately, the 22.0%‐efficient Cd‐free CIGSSe solar cell fabricated by all‐dry process is achieved with the aged Cs‐treated CIGSSe absorber with the aging time of 10 months.  相似文献   

15.
State‐of‐the‐art perovskite solar cells (PSCs) have bandgaps that are invariably larger than 1.45 eV, which limits their theoretically attainable power conversion efficiency. The emergent mixed‐(Pb, Sn) perovskites with bandgaps of 1.2–1.3 eV are ideal for single‐junction solar cells according to the Shockley–Queisser limit, and they have the potential to deliver higher efficiency. Nevertheless, the high chemical activity of Sn(II) in these perovskites makes it extremely challenging to control their physical properties and chemical stability, thereby leading to PSCs with relatively low PCE and stability. In this work, the authors employ the Lewis‐adduct SnF2·3FACl additive in the solution‐processing of ideal‐bandgap halide perovskites (IBHPs), and prepare uniform large‐grain perovskite thin films containing continuously functionalized grain boundaries with the stable SnF2 phase. Such Sn(II)‐rich grain‐boundary networks significantly enhance the physical properties and chemical stability of the IBHP thin films. Based on this approach, PSCs with an ideal bandgap of 1.3 eV are fabricated with a promising efficiency of 15.8%, as well as enhanced stability. The concept of Lewis‐adduct‐mediated grain‐boundary functionalization in IBHPs presented here points to a new chemical route for approaching the Shockley–Queisser limit in future stable PSCs.  相似文献   

16.
Unreacted lead iodide is commonly believed to be beneficial to the efficiency of methylammonium lead iodide perovskite based solar cells, since it has been proposed to passivate the defects in perovskite grain boundaries. However, it is shown here that the presence of unreacted PbI2 results in an intrinsic instability of the film under illumination, leading to the film degradation under inert atmosphere and faster degradation upon exposure to illumination and humidity. The perovskite films without lead iodide have improved stability, but lower efficiency due to inferior film morphology (smaller grain size, the presence of pinholes). Optimization of the deposition process resulted in PbI2‐free perovskite films giving comparable efficiency to those with excess PbI2 (14.2 ± 1.3% compared to 15.1 ± 0.9%) Thus, optimization of the deposition process for PbI2‐free films leads to dense, pinhole‐free, large grain size perovskite films which result in cells with high efficiency without detrimental effects on the film photostability caused by excess PbI2. However, it should be noted that for encapsulated devices illuminated through the substrate (fluorine‐doped tin oxide glass, TiO2 film), film photostability is not a key factor in the device degradation.  相似文献   

17.
To achieve high‐efficiency polycrystalline CdTe‐based thin‐film solar cells, the CdTe absorbers must go through a post‐deposition CdCl2 heat treatment followed by a Cu diffusion step. To better understand the roles of each treatment with regard to improving grains, grain boundaries, and interfaces, CdTe solar cells with and without Cu diffusion and CdCl2 heat treatments are investigated using cross‐sectional electron beam induced current, electron backscatter diffraction, and scanning transmission electron microscope techniques. The evolution of the cross‐sectional carrier collection profile due to these treatments that cause an increase in short‐circuit current and higher open‐circuit voltage are identified. Additionally, an increased carrier collection in grain boundaries after either/both of these treatments is revealed. The increased current at the grain boundaries is shown to be due to the presence of a space charge region with an intrinsic carrier collection profile width of ≈350 nm. Scanning transmission electron microscope electron‐energy loss spectroscopy shows a decreased Te and increased Cl concentration in grain boundaries after treatment, which causes the inversion. Each treatment improves the overall carrier collection efficiency of the cell separately, and, therefore, the benefits realized by each treatment are shown to be independent of each other.  相似文献   

18.
Perovskite solar cells (PSCs) have been emerging as a breakthrough photovoltaic technology, holding unprecedented promise for low‐cost, high‐efficiency renewable electricity generation. However, potential toxicity associated with the state‐of‐the‐art lead‐containing PSCs has become a major concern. The past research in the development of lead‐free PSCs has met with mixed success. Herein, the promise of coarse‐grained B‐γ‐CsSnI3 perovskite thin films as light absorber for efficient lead‐free PSCs is demonstrated. Thermally‐driven solid‐state coarsening of B‐γ‐CsSnI3 perovskite grains employed here is accompanied by an increase of tin‐vacancy concentration in their crystal structure, as supported by first‐principles calculations. The optimal device architecture for the efficient photovoltaic operation of these B‐γ‐CsSnI3 thin films is identified through exploration of several device architectures. Via modulation of the B‐γ‐CsSnI3 grain coarsening, together with the use of the optimal PSC architecture, planar heterojunction‐depleted B‐γ‐CsSnI3 PSCs with power conversion efficiency up to 3.31% are achieved without the use of any additives. The demonstrated strategies provide guidelines and prospects for developing future high‐performance lead‐free PVs.  相似文献   

19.
Grains and grain boundaries play key roles in determining halide perovskite‐based optoelectronic device performance. Halide perovskite monocrystalline solids with large grains, smaller grain boundaries, and uniform surface morphology improve charge transfer and collection, suppress recombination loss, and thus are highly favorable for developing efficient solar cells. To date, strategies of synthesizing high‐quality thin monocrystals (TMCs) for solar cell applications are still limited. Here, by combining the antisolvent vapor‐assisted crystallization and space‐confinement strategies, high‐quality millimeter sized TMCs of methylammonium lead iodide (MAPbI3) perovskites with controlled thickness from tens of nanometers to several micrometers have been fabricated. The solar cells based on these MAPbI3 TMCs show power conversion efficiency (PCE) of 20.1% which is significantly improved compared to their polycrystalline counterparts (PCE) of 17.3%. The MAPbI3 TMCs show large grain size, uniform surface morphology, high hole mobility (up to 142 cm2 V?1 s?1), as well as low trap (defect) densities. These properties suggest that TMCs can effectively suppress the radiative and nonradiative recombination loss, thus provide a promising way for maximizing the efficiency of perovskite solar cells.  相似文献   

20.
Solution‐based semiconductors give rise to the next generation of thin‐film electronics. Solution‐based silicon as a starting material is of particular interest because of its favorable properties, which are already vastly used in conventional electronics. Here, the application of a silicon precursor based on neopentasilane for the preparation of thin‐film solar cells is reported for the first time, and, for the first time, a performance similar to conventional fabrication methods is demonstrated. Because three different functional layers, n‐type contact layer, intrinsic absorber, and p‐type contact layer, have to be stacked on top of each other, such a device is a very demanding benchmark test of performance of solution‐based semiconductors. Complete amorphous silicon n‐i‐p solar cells with an efficiency of 3.5% are demonstrated, which significantly exceeds previously reported values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号