首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the wide application of lithium‐ion batteries in portable electronic devices and electric vehicles, the demand for new battery systems with the merits of high voltage, environmental friendliness, safety, and cost efficiency is still quite urgent. This perspective focuses on dual‐ion batteries (DIBs), in which, both the cations and anions are involved in the battery reaction. An anion's intercalation/deintercalation process on the cathode side allows the DIBs to operate at high voltages, which is favorable for enhanced energy density. However, electrolytes with a wide electrochemical window and suitable anion‐intercalation materials with highly reversible capacities should be developed. The progress of research into stable organic electrolytes, ionic liquids, and their effects on the electrochemical performances of DIBs are first discussed. Thereafter, the anion‐host materials including graphitic materials, organic materials, and their working mechanisms are discussed in detail. In addition, recently emerging DIB systems with high‐capacity anodes, or sodium‐, potassium‐ion involved battery reactions are also reviewed. The authors' recent work, demonstrating a generalized DIB construction using metal foil as both current collector and alloying anode material, which is successfully extended into lithium‐, sodium‐, and potassium‐based DIBs, is also discussed.  相似文献   

2.
Transition metal (TM) substitution has been widely applied to change complex oxides crystal structures to create high energy density electrodes materials in high performance rechargeable lithium‐ion batteries. The complex local structure in the oxides imparted by the TM arrangement often impacts their electrochemical behaviors by influencing the diffusion and intercalation of lithium. Here, a major discrepancy is demonstrated between the global and local structures of the promising high energy density and high voltage LiNi0.5Mn1.5O4 spinel cathode material that contradicts the existing structural models. A new single‐phase lattice‐cell orientation disorder model is proposed as the mechanism for the local ordering that explains how the inhomogeneous local distortions and the coherent connection give rise to the global structure in the complex oxide. Further, the single‐phase model is consistent with the electrochemical behavior observation of the materials.  相似文献   

3.
Mechanically bendable and flexible functionalities are urgently required for next‐generation battery systems that will be included in soft and wearable electronics, active sportswear, and origami‐based deployable space structures. However, it is very difficult to synthesize anode and cathode electrodes that have high energy density and structural reliability under large bending deformation. Here, vanadium oxide (V2O5) and nickel cobalt oxide (NiCo2O4) nanowire‐carbon fabric electrodes for highly flexible and bendable lithium ion batteries are reported. The vanadium oxide and nickel cobalt oxide nanowires were directly grown on plasma‐treated carbon fabric and were used as cathode and anode electrodes in a full cell lithium ion battery. Most importantly, a pre‐lithiation process was added to the nickel cobalt oxide nanowire anode to facilitate the construction of a full cell using symmetrically‐architectured nanowire‐carbon fabric electrodes. The highly bendable full cell based on poly(ethylene oxide) polymer electrolyte and room temperature ionic liquid shows high energy density of 364.2 Wh kg?1 at power density of 240 W kg?1, without significant performance degradation even under large bending deformations. These results show that vanadium oxide and lithiated nickel cobalt oxide nanowire‐carbon fabrics are a good combination for binder‐free electrodes in highly flexible lithium‐ion batteries.  相似文献   

4.
Layered lithium nickel oxide (LiNiO2) can provide very high energy density among intercalation cathode materials for lithium‐ion batteries, but suffers from poor cycle life and thermal‐abuse tolerance with large lithium utilization. In addition to stabilization of the active cathode material, a concurrent development of electrolyte systems of better compatibility is critical to overcome these limitations for practical applications. Here, with nonaqueous electrolytes based on exclusively aprotic acyclic carbonates free of ethylene carbonate (EC), superior electrochemical and thermal characteristics are obtained with an ultrahigh‐nickel cathode (LiNi0.94Co0.06O2), capable of reaching a 235 mA h g?1 specific capacity. Pouch‐type graphite|LiNi0.94Co0.06O2 cells in EC‐free electrolytes withstand several hundred charge–discharge cycles with minor degradation at both ambient and elevated temperatures. In thermal‐abuse tests, the cathode at full charge, while reacting aggressively with EC‐based electrolytes below 200 °C, shows suppressed self‐heating without EC. Through 3D chemical and structural analyses, the intriguing impact of EC is visualized in aggravating unwanted surface parasitic reactions and irreversible bulk structural degradation of the cathode at high voltages. These results provide important insights in designing high‐energy electrodes for long‐lasting and reliable lithium‐ion batteries.  相似文献   

5.
Herein, the successful synthesis of MnPO4‐coated LiNi0.4Co0.2Mn0.4O2 (MP‐NCM) as a lithium battery cathode material is reported. The MnPO4 coating acts as an ideal protective layer, physically preventing the contact between the NCM active material and the electrolyte and, thus, stabilizing the electrode/electrolyte interface and preventing detrimental side reactions. Additionally, the coating enhances the lithium de‐/intercalation kinetics in terms of the apparent lithium‐ion diffusion coefficient. As a result, MP‐NCM‐based electrodes reveal greatly enhanced C‐rate capability and cycling stability—even under exertive conditions like extended operational potential windows, elevated temperature, and higher active material mass loadings. This superior electrochemical behavior of MP‐NCM compared to as‐synthesized NCM is attributed to the superior stability of the electrode/electrolyte interface and structural integrity when applying a MnPO4 coating. Employing an ionic liquid as an alternative, intrinsically safer electrolyte system allows for outstanding cycling stabilities in a lithium‐metal battery configuration with a capacity retention of well above 85% after 2000 cycles. Similarly, the implementation in a lithium‐ion cell including a graphite anode provides stable cycling for more than 2000 cycles and an energy and power density of, respectively, 376 Wh kg?1 and 1841 W kg?1 on the active material level.  相似文献   

6.
A synthesis methodology is demonstrated to produce MoS2 nanoparticles with an expanded atomic lamellar structure that are ideal for Faradaic‐based capacitive charge storage. While much of the work on MoS2 focuses on the high capacity conversion reaction, that process is prone to poor reversibility. The pseudocapacitive intercalation‐based charge storage reaction of MoS2 is investigated, which is extremely fast and highly reversible. A major challenge in the field of pseudocapacitive‐based energy storage is the development of thick electrodes from nanostructured materials that can sustain the fast inherent kinetics of the active nanocrystalline material. Here a composite electrode comprised of a poly(acrylic acid) binder, carbon fibers, and carbon black additives is utilized. These electrodes deliver a specific capacity of 90 mAh g?1 in less than 20 s and can be cycled 3000 times while retaining over 80% of the original capacity. Quantitative kinetic analysis indicates that over 80% of the charge storage in these MoS2 nanocrystals is pseudocapacitive. Asymmetric full cell devices utilizing a MoS2 nanocrystal‐based electrode and an activated carbon electrode achieve a maximum power density of 5.3 kW kg?1 (with 6 Wh kg?1 energy density) and a maximum energy density of 37 Wh kg?1 (with 74 W kg?1power density).  相似文献   

7.
Electrochemical metal‐ion intercalation systems are acknowledged to be a critical energy storage technology. The kinetics of the intercalation processes in transition‐metal based oxides determine the practical characteristics of metal‐ion batteries, such as the energy density, power, and cyclability. With the emergence of post lithium‐ion batteries, such as sodium‐ion and potassium‐ion batteries, which function predominately in nonaqueous electrolytes of special formulation and exhibit quite varied material stability with regard to their surface chemistries and reactivity with electrolytes, the practical routes for the optimization of metal‐ion battery performance become essential. Electrochemical methods offer a variety of means to quantitatively study the diffusional, charge transfer, and phase transformation rates in complex systems, which are, however, rather rarely fully adopted by the metal‐ion battery community, which slows down the progress in rationalizing the rate‐controlling factors in complex intercalation systems. Herein, several practical approaches for diagnosing the origin of the rate limitations in intercalation materials based on phenomenological models are summarized, focusing on the specifics of charge transfer, diffusion, and nucleation phenomena in redox‐active solid electrodes. It is demonstrated that information regarding rate‐determining factors can be deduced from relatively simple analysis of experimental methods including cyclic voltammetry, chronoamperometry, and impedance spectroscopy.  相似文献   

8.
Aqueous batteries are facing big challenges in the context of low working voltages and energy density, which are dictated by the narrow electrochemical window of aqueous electrolytes and low specific capacities of traditional intercalation‐type electrodes, even though they usually represent high safety, low cost, and simple maintenance. For the first time, this work demonstrates a record high‐energy‐density (1503 Wh kg?1 calculated from the cathode active material) aqueous battery system that derives from a novel electrolyte design to expand the electrochemical window of electrolyte to 3 V and two high‐specific‐capacity electrode reactions. An acid‐alkaline dual electrolyte separated by an ion‐selective membrane enables two dissolution/deposition electrode redox reactions of MnO2/Mn2+ and Zn/Zn(OH)42? with theoretical specific capacities of 616 and 820 mAh g?1, respectively. The newly proposed Zn–Mn2+ aqueous battery shows a high Coulombic efficiency of 98.4% and cycling stability of 97.5% of discharge capacity retention for 1500 cycles. Furthermore, in the flow battery based on Zn–Mn2+ pairs, more excellent stability of 99.5% of discharge capacity retention for 6000 cycles is achieved due to greatly improved reversibility of the Zn anode. This work provides a new path for the development of novel aqueous batteries with high voltage and energy density.  相似文献   

9.
Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g? based on the reactions of SnO2 + 4Li+ + 4e? ? Sn + 2Li2O and Sn + 4.4Li+ + 4.4e? ? Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted.  相似文献   

10.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   

11.
The ongoing surge in demand for high‐energy/flexible rechargeable batteries relentlessly drives technological innovations in cell architecture as well as electrochemically active materials. Here, a new class of all‐nanomat lithium‐ion batteries (LIBs) based on 1D building element‐interweaved heteronanomat skeletons is demonstrated. Among various electrode materials, silicon (Si, for anode) and overlithiated layered oxide (OLO, for cathode) materials are chosen as model systems to explore feasibility of this new cell architecture and achieve unprecedented cell capacity. Nanomat electrodes, which are completely different from conventional slurry‐cast electrodes, are fabricated through concurrent electrospinning (for polymeric nanofibers) and electrospraying (for electrode materials/carbon nanotubes (CNTs)). Si (or rambutan‐shaped OLO/CNT composite) powders are compactly embedded in the spatially interweaved polymeric nanofiber/CNT heteromat skeletons that play a crucial role in constructing 3D‐bicontinuous ion/electron transport pathways and allow for removal of metallic foil current collectors. The nanomat Si anodes and nanomat OLO cathodes are assembled with nanomat Al2O3 separators, leading to the fabrication of all‐nanomat LIB full cells. Driven by the aforementioned structural/chemical uniqueness, the all‐nanomat full cell shows exceptional improvement in electrochemical performance (notably, cell‐based gravimetric energy density = 479 W h kgCell?1) and also mechanical deformability, which lie far beyond those achievable with conventional LIB technologies.  相似文献   

12.
The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell architectures as well as electroactive materials. Designing thick electrodes with more electroactive materials is a promising strategy to improve the energy density of lithium‐ion batteries (LIBs) without alternating the underlying chemistry. However, the progress toward thick, high areal capacity electrodes is severely limited by the sluggish electronic/ionic transport and easy deformability of conventional electrodes. A self‐supported ultrahigh‐capacity and fire‐resistant LiFePO4 (UCFR‐LFP)‐based nanocomposite cathode is demonstrated here. Benefiting from the structural and chemical uniqueness, the UCFR‐LFP electrodes demonstrate exceptional improvements in electrochemical performance and mass loading of active materials, and thermal stability. Notably, an ultrathick UCFR‐LFP electrode (1.35 mm) with remarkably high mass loading of active materials (108 mg cm?2) and areal capacity (16.4 mAh cm?2) is successfully achieved. Moreover, the 1D inorganic binder‐like ultralong hydroxyapatite nanowires (HAP NWs) enable the UCFR‐LFP electrode with excellent thermal stability (structural integrity up to 1000 °C and electrochemical activity up to 750 °C), fire‐resistance, and wide‐temperature operability. Such a unique UCFR‐LFP electrode offers a promising solution for next‐generation LIBs with high energy density, high safety, and wide operating‐temperature window.  相似文献   

13.
While lithium ion batteries with electrodes based on intercalation compounds have dominated the portable energy storage market for decades, the energy density of these materials is fundamentally limited. Today, rapidly growing demand for this type of energy storage is driving research into materials that utilize alternative reaction mechanisms to enable higher energy densities. Transition metal compounds are one such class of materials, with storage enabled by “conversion” reactions, where the material is converted to new compound upon lithiation. MoS2 is one example of this type of material that has generated a large amount of interest recently due to its high theoretical lithium storage capacity compared to graphite. Here, cryogenic scanning transmission electron microscopy techniques are used to reveal the atomic‐scale processes that occur during reaction of a model monolayer MoS2 system by enabling the unaltered atomic structure to be determined at various levels of lithiation. It is revealed that monolayer MoS2 can undergo a conversion reaction even with no substrate, and that the resulting particles are smaller than those that form in bulk MoS2, likely due to the more limited 2D diffusion. Additionally, while bilayer MoS2 undergoes intercalation with a corresponding phase transition before conversion, monolayer MoS2 does not.  相似文献   

14.
Benefiting from higher volumetric capacity, environmental friendliness and metallic dendrite‐free magnesium (Mg) anodes, rechargeable magnesium batteries (RMBs) are of great importance to the development of energy storage technology beyond lithium‐ion batteries (LIBs). However, their practical applications are still limited by the absence of suitable electrode materials, the sluggish kinetics of Mg2+ insertion/extraction and incompatibilities between electrodes and electrolytes. Herein, a systematic and insightful review of recent advances in RMBs, including intercalation‐based cathode materials and conversion reaction‐based compounds is presented. The relationship between microstructures with their electrochemical performances is comprehensively elucidated. In particular, anode materials are discussed beyond metallic Mg for RMBs. Furthermore, other Mg‐based battery systems are also summarized, including Mg–air batteries, Mg–sulfur batteries, and Mg–iodine batteries. This review provides a comprehensive understanding of Mg‐based energy storage technology and could offer new strategies for designing high‐performance rechargeable magnesium batteries.  相似文献   

15.
Developing high‐performance batteries through applying renewable resources is of great significance for meeting ever‐growing energy demands and sustainability requirements. Biomaterials have overwhelming advantages in material abundance, environmental benignity, low cost, and more importantly, multifunctionalities from structural and compositional diversity. Therefore, significant and fruitful research on exploiting various natural biomaterials (e.g., soy protein, chitosan, cellulose, fungus, etc.) for boosting high‐energy lithium‐based batteries by means of making or modifying critical battery components (e.g., electrode, electrolyte, and separator) are reported. In this review, the recent advances and main strategies for adopting biomaterials in electrode, electrolyte, and separator engineering for high‐energy lithium‐based batteries are comprehensively summarized. The contributions of biomaterials to stabilizing electrodes, capturing electrochemical intermediates, and protecting lithium metal anodes/enhancing battery safety are specifically emphasized. Furthermore, advantages and challenges of various strategies for fabricating battery materials via biomaterials are described. Finally, future perspectives and possible solutions for further development of biomaterials for high‐energy lithium‐based batteries are proposed.  相似文献   

16.
Solid‐state lithium metal batteries (SSLMBs) may become one of the high‐energy density storage devices for the next generation of electric vehicles. High safety and energy density can be achieved by utilizing solid electrolytes and Li metal anodes. Therefore, developing cathode materials which can match with Li metal anode efficiently is indispensable. In SSLMBs, Li metal anodes can afford the majority of active lithium ions, then lithium‐depleted cathode materials can be a competitive candidate to achieve high gravimetric energy density as well as save lithium resources. Li0.33MnO2 lithium‐depleted material is chosen, which also has the advantages of low synthesis temperature and low cost (cobalt‐free). Notably, solid‐state electrolyte can greatly alleviate the problem of manganese dissolution in the electrolyte, which is beneficial to improve the cycling stability of the battery. Thus, SSLMBs enable practical applications of lithium‐depleted cathode materials.  相似文献   

17.
As an alternative to commercial Ni‐ and Co‐based intercalation‐type cathode materials, conversion‐type metal fluoride (MFx) cathodes are attracting more interest due to their promises to increase cell‐level energy density when coupled with lithium (Li) or silicon (Si)‐based anodes. Among metal fluorides, iron fluorides (FeF2 and FeF3) are regarded as some of the most promising candidates due to their high capacity, moderately high potential and the very low cost of Fe. In this study, the impacts of electrolyte composition on the performance and stability of nanostructured FeF2 cathodes are systematically investigated. Dramatic impacts of Li salt composition, Li salt concentration, solvent composition, and cycling potential range on the cathode's most critical performance parameters—stability, capacity, rate, and voltage hysteresis are discovered. In contrast to previous beliefs, it is observed that even if the Fe2+ cation dissolution could be avoided, the dissolution of F? anions may still negatively affect cathode performance. Formation of the more favorable cathode solid electrolyte interface (CEI) is found to minimize both processes.  相似文献   

18.
The intercalation of lithium ions into graphite electrode is the key underlying mechanism of modern lithium‐ion batteries. However, co‐intercalation of lithium‐ions and solvent into graphite is considered undesirable because it can trigger the exfoliation of graphene layers and destroy the graphite crystal, resulting in poor cycle life. Here, it is demonstrated that the [lithium–solvent]+ intercalation does not necessarily cause exfoliation of the graphite electrode and can be remarkably reversible with appropriate solvent selection. First‐principles calculations suggest that the chemical compatibility of the graphite host and [lithium–solvent]+ complex ion strongly affects the reversibility of the co‐intercalation, and comparative experiments confirm this phenomenon. Moreover, it is revealed that [lithium–ether]+ co‐intercalation of natural graphite electrode enables much higher power capability than normal lithium intercalation, without the risk of lithium metal plating, with retention of ≈87% of the theoretical capacity at current density of 1 A g?1. This unusual high rate capability of the co‐intercalation is attributed to the (i) absence of the desolvation step, (ii) negligible formation of the solid–electrolyte interphase on graphite surface, and (iii) fast charge‐transfer kinetics. This work constitutes the first step toward the utilization of fast and reversible [lithium–solvent]+ complex ion intercalation chemistry in graphite for rechargeable battery technology.  相似文献   

19.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   

20.
Lithium ion capacitors (LICs), which are hybrid electrochemical energy storage devices combining the intercalation/deintercalation mechanism of a lithium‐ion battery (LIB) electrode with the adsorption/desorption mechanism of an electric double‐layer capacitor (EDLC) electrode, have been extensively investigated during the past few years by virtue of their high energy density, rapid power output, and excellent cycleability. In this review, the LICs are defined as the devices with an electrochemical intercalation electrode and a capacitive electrode in organic electrolytes. Both electrodes can serve as anode or cathode. Throughout the history of LICs, tremendous efforts have been devoted to design suitable electrode materials or develop novel type LIC systems. However, one of the key challenges encountered by LICs is how to balance the sluggish kinetics of intercalation electrodes with high specific capacity against the high power characteristics of capacitive electrode with low specific capacitance. Herein, the developments and the latest advances of LIC in material design strategies and key techniques according to the basic scientific problems are summarized. Perspectives for further development of LICs toward practical applications are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号