首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solution‐processed organic solar cells (OSCs) are promising low‐cost, flexible, portable renewable sources for future energy supply. The state‐of‐the‐art OSCs are typically fabricated from a bulk‐heterojunction (BHJ) active layer containing well‐mixed donor and acceptor molecules in the nanometer regime. However, BHJ solar cells suffer from stability problems caused by the severe morphological changes upon thermal or illumination stress. In comparison, single‐component organic solar cells (SCOSCs) based on a double‐cable conjugated polymer with a covalently stabilized microstructure is suggested to be a key strategy for superior long‐term stability. Here, the thermal‐ and photostability of SCOSCs based on a model double‐cable polymer is systematically investigated. It is encouraging to find that under 90 °C & 1 sun illumination, the performance of SCOSCs remains substantially stable. Transport measurements show that charge generation and recombination (lifetime and recombination order) hardly change during the aging process. Particularly, the SCOSCs exhibit ultrahigh long‐term thermal stability with 100% PCE remaining after heating at temperature up to 160 °C for over 400 h, indicating an excellent candidate for extremely rugged applications.  相似文献   

2.
Remarkable progress has been made in the development of high‐efficiency solution‐processable nonfullerene organic solar cells (OSCs). However, the effect of the vertical stratification of bulk heterojunction (BHJ) on the efficiency and stability of nonfullerene OSCs is not fully understood yet. In this work, we report our effort to understand the stability of nonfullerene OSCs, made with the binary blend poly[(2,6‐(4, 8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′] dithiophene‐4,8‐dione)] (PBDB‐T):3,9‐ bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐ dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′] dithiophene (ITIC) system. It shows that a continuous vertical phase separation process occurs, forming a PBDB‐T‐rich top surface and an ITIC‐rich bottom surface in PBDB‐T:ITIC BHJ during the aging period. A gradual decrease in the built‐in potential (V0) in the regular configuration PBDB‐T:ITIC OSCs, due to the interfacial reaction between the poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) hole transporting layer and ITIC acceptor, is one of the reasons responsible for the performance deterioration. The reduction in V0, caused by an inevitable reaction at the ITIC/PEDOT:PSS interface in the OSCs, can be suppressed by introducing a MoO3 interfacial passivation layer. Retaining a stable and high V0 across the BHJ through interfacial modification and device engineering, e.g., as seen in the inverted PBDB‐T:ITIC OSCs, is a prerequisite for efficient and stable operation of nonfullerene OSCs.  相似文献   

3.
A fundamental analysis of the external quantum efficiency (EQE) of organic tandem solar cells with equal absorbers in both subcells (homo‐tandem solar cells) is presented. Providing direct access to both subcells by introducing a conductive intermediate polymer electrode into the recombination zone, without changing the optical and electric device properties, the three‐terminal device becomes a proxy to the two‐terminal tandem solar cell properties. From the spectrally resolved EQE of the subcells in three‐terminal configuration wavelength and intensity of suitable bias light as well as bias voltage are determined that in turn allow for accurate EQE measurements of the common two‐terminal tandem solar cells. Theoretic considerations allow the prediction of the tandem solar cell's EQE from its subcells' EQEs as well as the prediction of the tandem cell EQE under monochromatic bias light illumination being in excellent agreement with experimental results. All findings discussed herein can be applied to more common hetero‐tandem solar cell architectures likewise.  相似文献   

4.
A novel technique based upon injection‐charge extraction by linearly increasing voltage (i‐CELIV) in a metal‐insulator‐semiconductor (MIS) diode structure is described for studying charge transport in organic semiconductors. The technique (MIS‐CELIV) allows selective measurement of both electron and hole mobilities of organic solar cells with active layers thicknesses representative of operational devices. The method is used to study the model high efficiency bulk heterojunction combination poly[N‐9′′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) and [6,6]‐phenyl C70‐butyric acid methyl ester (PC70BM) at various blend ratios. The absence of bipolar transport in PCDTBT‐and‐PC70BM‐only diodes is shown and strongly imbalanced carrier mobility is found in the most efficient “optimized” blend ratios. The mobility measurements are correlated with overall device performance and it is found that balanced and high charge carrier mobility are not necessarily required for high efficiencies in thin film organic solar cells.  相似文献   

5.
6.
We report on the effects of screening of the electric field by doping‐induced mobile charges on photocurrent collection in operational organic solar cells. Charge transport and recombination were studied using double injection (DI) and charge extraction by linearly increasing voltage (CELIV) transient techniques in bulk‐heterojunction solar cells made from acceptor‐donor blends of poly(3‐n‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM). It is shown that the screening of the built‐in field in operational solar cells can be controlled by an external voltage while the influence on charge transport and recombination is measured. An analytical theory to extract the bimolecular recombination coefficient as a function of electric field from the injection current is also reported. The results demonstrate that the suppressed (non‐Langevin) bimolecular recombination rate and charge collection are not strongly affected by native doping levels in this materials combination. Hence, it is not necessary to reduce the level of doping further to improve the device performance of P3HT‐based solar cells.  相似文献   

7.
Organic solar cells (OSCs) containing non‐fullerene acceptors have realized high power conversion efficiency (PCE) up to 14%. However, most of these high‐performance non‐fullerene OSCs have been reported with optimal active layer thickness of about 100 nm, mainly due to the low electron mobility (≈10?4–10?5 cm2 V?1 s?1) of non‐fullerene acceptors, which are not suitable for roll‐to‐roll large‐scale processing. In this work, an efficient non‐fullerene OSC based on poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′′′‐diyl)] (PffBT4T‐2OD):EH‐IDTBR (consists of electron‐rich indaceno[1,2‐b:5,6‐b′]dithiophene as the central unit and an electron‐deficient 5,6‐benzo[c][1,2,5]thiadiazole unit flanked with rhodanine as the peripheral group) with thickness‐independent PCE (maintaining a PCE of 9.1% with an active layer thickness of 300 nm) is presented by optimizing device architectures to overcome the space‐charge effects. Optical modeling reveals that most of the incident light is absorbed near the transparent electrode side in thick‐film devices. The transport distance of electrons with lower mobility will therefore be shortened when using inverted device architecture, in which most of the excitons are generated close to the cathode side and therefore substantially reduces the accumulation of electrons in the device. As a result, an efficient thick‐film non‐fullerene OSC is realized. These results provide important guidelines for the development of more efficient thick‐film non‐fullerene OSCs.  相似文献   

8.
9.
10.
The presence of non‐radiative recombination at the perovskite surface/interface limits the overall efficiency of perovskite solar cells (PSCs). Surface passivation has been demonstrated as an efficient strategy to suppress such recombination in Si cells. Here, 1‐naphthylmethylamine iodide (NMAI) is judiciously selected to passivate the surface of the perovskite film. In contrast to the popular phenylethylammonium iodide, NMAI post‐treatment primarily leaves NMAI salt on the surface of the perovskite film. The formed NMAI layer not only efficiently decreases the defect‐assisted recombination for chemical passivation, but also retards the charge accumulation of energy level mis‐alignment for vacuum level bending and prevents minority carrier recombination due to the charge‐blocking effect. Consequently, planar PSCs with high efficiency of 21.04% and improved long‐term stability (98.9% of the initial efficiency after 3240 h) are obtained. Moreover, open‐circuit voltage as high as 1.20 V is achieved at the absorption threshold of 1.61 eV, which is among the highest reported values in planar PSCs. This work provides new insights into the passivation mechanisms of organic ammonium salts and suggests future guidelines for developing improved passivation layers.  相似文献   

11.
To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of contacts, the electron and hole transport layers, charge generation, drift and diffusion of charge carriers and recombination. The simulation to the experimental data of vacuum‐deposited CH3NH3PbI3 solar cells over multiple thicknesses has been fit and the device behavior under different operating conditions has been studied to delineate the influence of the external bias, charge‐carrier mobilities, energetic barriers for charge injection/extraction and, different recombination channels on the solar cell performance. By doing so, a unique set of material parameters and physical processes that describe these solar cells is identified. Trap‐assisted recombination at material interfaces is the dominant recombination channel limiting device performance and passivation of traps increases the power conversion efficiency (PCE) of these devices by 40%. Finally, guidelines to increase their performance have been issued and it is shown that a PCE beyond 25% is within reach.  相似文献   

12.
Metal nanoparticles are demonstrated to boost the internal quantum efficiency (IQE) of organic solar cells (OSCs), even without a notable plasmonic optical gain. A hybrid layer platform in combination with silver nanoparticles (AgNPs) and a polyethylenimine‐ethoxylated (PEIE) layer maximize the IQE of the OSCs to nearly 100%, yielding a power conversion efficiency (PCE) of 10.1% in the OSCs. 2D surface characterization confirmed that the AgNPs provide a short path and funneled charge carriers to the cathode, thus effectively increasing the carrier mobility. Moreover, the hybrid layer doubles the device's half‐efficiency lifetime due to the longer retention of the improved mobility.  相似文献   

13.
A modified detailed balance model is built to understand and quantify efficiency loss of perovskite solar cells. The modified model captures the light‐absorption‐dependent short‐circuit current, contact and transport‐layer‐modified carrier transport, as well as recombination and photon‐recycling‐influenced open‐circuit voltage. The theoretical and experimental results show that for experimentally optimized perovskite solar cells with the power conversion efficiency of 19%, optical loss of 25%, nonradiative recombination loss of 35%, and ohmic loss of 35% are the three dominant loss factors for approaching the 31% efficiency limit of perovskite solar cells. It is also found that the optical loss climbs up to 40% for a thin‐active‐layer design. Moreover, a misconfigured transport layer introduces above 15% of energy loss. Finally, the perovskite‐interface‐induced surface recombination, ohmic loss, and current leakage should be further reduced to upgrade device efficiency and eliminate hysteresis effect. This work contributes to fundamental understanding of device physics of perovskite solar cells. The developed model offers a systematic design and analysis tool to photovoltaic science and technology.  相似文献   

14.
15.
A new series of organic salts with selective near‐infrared (NIR) harvesting to 950 nm is reported, and anion selection and blending is demonstrated to allow for fine tuning of the open‐circuit voltage. Extending photoresponse deeper into the NIR is a significant challenge facing small molecule organic photovoltaics, and recent demonstrations have been limited by open‐circuit voltages much lower than the theoretical and practical limits. This work presents molecular design strategies that enable facile tuning of energy level alignment and open‐circuit voltages in organic salt‐based photovoltaics. Anions are also shown to have a strong influence on exciton diffusion length. These insights provide a clear route toward achieving high efficiency transparent and panchromatic photovoltaics, and open up design opportunities to rapidly tailor molecules for new donor–acceptor systems.  相似文献   

16.
Triple‐junction device architectures represent a promising strategy to highly efficient organic solar cells. Accurate characterization of such devices is challenging, especially with respect to determining the external quantum efficiency (EQE) of the individual subcells. The specific light bias conditions that are commonly used to determine the EQE of a subcell of interest cause an excess of charge generation in the two other subcells. This results in the build‐up of an electric field over the subcell of interest, which enhances current generation and leads to an overestimation of the EQE. A new protocol, involving optical modeling, is developed to correctly measure the EQE of triple‐junction organic solar cells. Apart from correcting for the build‐up electric field, the effect of light intensity is considered with the help of representative single‐junction cells. The short‐circuit current density (JSC) determined from integration of the EQE with the AM1.5G solar spectrum differs by up to 10% between corrected and uncorrected protocols. The results are validated by comparing the EQE experimentally measured to the EQE calculated via optical‐electronic modeling, obtaining an excellent agreement.  相似文献   

17.
A high Schottky barrier (>0.65 eV) for electrons is typically found on lightly doped n‐type crystalline (c‐Si) wafers for a variety of contact metals. This behavior is commonly attributed to the Fermi‐level pinning effect and has hindered the development of n‐type c‐Si solar cells, while its p‐type counterparts have been commercialized for several decades, typically utilizing aluminium alloys in full‐area, and more recently, partial‐area rear contact configurations. Here the authors demonstrate a highly conductive and thermally stable electrode composed of a magnesium oxide/aluminium (MgOx/Al) contact, achieving moderately low resistivity Ohmic contacts on lightly doped n‐type c‐Si. The electrode, functionalized with nanoscale MgOx films, significantly enhances the performance of n‐type c‐Si solar cells to a power conversion efficiency of 20%, advancing n‐type c‐Si solar cells with full‐area dopant‐free rear contacts to a point of competitiveness with the standard p‐type architecture. The low thermal budget of the cathode formation, its dopant‐free nature, and the simplicity of the device structure enabled by the MgOx/Al contact open up new possibilities in designing and fabricating low‐cost optoelectronic devices, including solar cells, thin film transistors, or light emitting diodes.  相似文献   

18.
Hole‐transporting materials (HTMs) are essential for enabling highly efficient perovskite solar cells (PVSCs) to extract and transport the hole carriers. Among numerous HTMs that are studied so far, the single‐spiro‐based compounds are the most frequently used HTMs for achieving highly efficient PVSCs. In fact, all the new spiro‐based HTMs reported so far that render PVSCs over 20% are based on spiro[fluorene‐9,9′‐xanthene] or spiro [cyclopenta [2,1‐b:3,4b′]dithiophene‐4,9′‐fluorene] cores; therefore, there is a need to diversify the design of their structures for further improving their function and performance. In addition, the fundamental understanding of structure–performance relationships for the spiro‐based HTMs is still lagging, for example, how molecular configuration, spiro numbers, and heteroatoms in spiro‐rings impact the efficacy of HTMs. To address these needs, two novel H‐shaped HTMs, G1 and G2 based on the di‐spiro‐rings as the cores are designed and synthesized. The combined good film‐forming properties, better interactions with perovskite, slightly deeper highest occupied molecular orbital, higher mobility and conductivity, as well as more efficient charge transfer for G2 help devices reach a very impressive power conversion efficiency of 20.2% and good stability. This is the first report of demonstrating the feasibility of using di‐spiro‐based HTMs for highly efficient PVSCs.  相似文献   

19.
20.
Next‐generation organic solar cells such as dye‐sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are studied at the National Institute of Advanced Industrial Science and Technology (AIST), and their materials, electronic properties, and fabrication processes are investigated. To enhance the performance of DSSCs, the basic structure of an electron donor, π‐electron linker, and electron acceptor, i.e., D–π–A, is suggested. In addition, special organic dyes containing coumarin, carbazole, and triphenylamine electron donor groups are synthesized to find an effective dye structure that avoids charge recombination at electrode surfaces. Meanwhile, PSCs are manufactured using both a coating method and a laser deposition technique. The results of interfacial studies demonstrate that the level of the conduction band edge (CBE) of a compact TiO2 layer is shifted after TiCl4 treatment, which strongly affects the solar cell performance. Furthermore, a special laser deposition system is developed for the fabrication of the perovskite layers of PSCs, which facilitates the control over the deposition rate of methyl ammonium iodide used as their precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号