首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Packaging is a critical aspect of triboelectric nanogenerators (TENG) toward practical applications, since the performance of TENG is greatly affected by environmental conditions such as humidity. A waterproof triboelectric–electromagnetic hybrid generator (WPHG) for harvesting mechanical energy in harsh environments is reported. Since the mechanical transmission from the external mechanical source to the TENG is through a noncontact force between the paired magnets, a fully isolated packaging of TENG part can be easily achieved. At the same time, combining with metal coils, these magnets can be fabricated to be electromagnetic generators (EMG). The characteristics and advantages of outputs from both TENG and EMG are systematically studied and compared to each other. By using transformers and full‐wave rectifiers, 2.3 mA for total short‐circuit current and 5 V for open‐circuit voltage are obtained for WPHG under a rotation speed of 1600 rpm, and it can charge a supercapacitor (20 mF) to 1 V in 22s. Finally, the WPHG is demonstrated to harvest wind energy in the rainy condition and water‐flow energy under water. The reported WPHG renders an effective and sustainable technology for ambient mechanical energy harvesting in harsh environments. Solid progress in both the packaging of TENG and the practical applications of the hybrid generator toward practical power source and self‐powered systems is presented.  相似文献   

3.
A triboelectric generator based on checker‐like interdigital electrodes (TEGC) with a sandwiched polyethylene terephthalate (PET) thin film that can convert translation kinetic energy in all directions to electricity is reported. The design of the sandwiched PET thin film can effectively avoid direct wear between metal electrodes and sliding panel. The mechanism of the TEGC is described in detail. The performance of the TEGC in different sliding directions is studied, indicating a maximum output power density of 1.9 W m‐2 and open‐circuit voltage of 210 V achieved in the X or Y sliding direction. The TEGC is used to charge a 110 μF commercial capacitor to 5 V in 35 s and light up two light‐emitting diodes (LEDs) connected with the capacitor simultaneously. The TEGC based mouse pad and sliding panel are fabricated to harvest mouse operation energy to light up LEDs connected in antiparallel when the computer mouse operates a game. The TEGC has advantages of being flexible, light weight, durable, cost effective, and portable by folding or rolling into a small part. This work presents a significant progress toward the structure design of triboelectric generator for its practical applications.  相似文献   

4.
5.
6.
Skutterudites are promising thermoelectric materials because of their high figure of merit, ZT, and good thermomechanical properties. This work reports the effective figure of merit, ZTeff, and the efficiency of skutterudite legs and a unicouple working under a large temperature difference. The p‐ and n‐type legs are fabricated with electrodes sintered directly to the skutterudite during a hot pressing process. CoSi2 is used as the electrode for the n‐type skutterudite (Yb0.35Co4Sb12) and Co2Si for the p‐type skutterudite (NdFe3.5Co0.5Sb12). A technique is developed to measure the ZTeff of individual legs and the efficiency of a unicouple. An ZTeff of 0.74 is determined for the n‐type legs operating between 52 and 595 °C, and an ZTeff of 0.51 for the p‐type legs operating between 77 and 600 °C. The efficiency of the p–n unicouple is determined to be 9.1% operating between ~70 and 550 °C.  相似文献   

7.
Due to excellent electronic and optical properties as well as tunable work functions, graphene and graphene‐based materials are highly attractive for applications in enhancement of harvesting solar energy. In particular, they can be used as electron and hole transport materials, buffer layers, and window or/and counter electrodes in solar cells. This research news surveys very recent advances in this emerging field, with emphasis on fundamental understanding of their performance enhancement mechanisms for photovoltaic devices, and discusses future challenges.  相似文献   

8.
Tire pressure monitoring systems (TPMS) are becoming increasingly important to ensure safe and efficient use of tires in the automotive sector. A typical TPMS system consists of a battery powered wireless sensor, as part of the tire, and a remote receiver to collect sensor data, such as pressure and temperature. In order to provide a maintenance‐free and battery‐less sensor solution there is growing interest in using energy harvesting technologies to provide power for TPMS. This paper summarizes the current literature and discusses the use of piezoelectric, electromagnetic, electret and triboelectric materials in a variety of harvesting systems.  相似文献   

9.
Plasmonics - In this paper, we propose new detectivity enhanced infrared detectors in which metamaterial cells are used to harvest the IR energy. Analytical models are developed and numerically...  相似文献   

10.
11.
The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency.  相似文献   

12.
Vibrations in living environments are generally distributed over a wide frequency spectrum and exhibit multiple motion directions over time, which renders most of the current vibration energy harvesters unpractical for their harvesting purposes. Here, a 3D triboelectric nanogenerator (3D‐TENG) is designed based on the coupling of the triboelectrification effect and the electrostatic induction effect. The 3D‐TENG operates in a hybridization mode of conjuntioning the vertical contact‐separation mode and the in‐plane sliding mode. The innovative design facilitates harvesting random vibrational energy in multiple directions over a wide bandwidth. An analytical model is established to investigate the mechano‐triboelectric transduction of 3D‐TENG and the results agree well with experimental data. The 3D‐TENG is able to harvest ambient vibrations with an extremely wide working bandwidth. Maximum power densities of 1.35 W m‐2 and 1.45 W m‐2 are achieved under out‐of‐plane and in‐plane excitation, respectively. The 3D TENG is designed for harvesting ambient vibration energy, especially at low frequencies, under a range of conditions in daily life and has potential applications in environmental/infrastructure monitoring and charging portable electronics.  相似文献   

13.
14.
A new method for thermal energy harvesting at small temperature difference and high cycling frequency is presented that exploits the unique magnetic properties and actuation capability of magnetic shape memory alloy (MSMA) films. Polycrystalline films of the Ni50.4Co3.7Mn32.8In13.1 alloy are tailored, showing a large abrupt change of magnetization and low thermal hysteresis well above room temperature. Based on this material, a free‐standing film device is designed that exhibits thermomagnetically induced actuation between a heat source and sink with short heat transfer times. The cycling frequency of the device is tuned by mechanical frequency up‐conversion to over 200 Hz. An integrated pick‐up coil converts the thermally induced change of magnetization as well as the kinetic energy to electricity. For a temperature change of 10 K, the maximum peak power density is in the order of 5 mW cm‐3.  相似文献   

15.
16.
In this paper, systematic study for asymmetric tapered dipole nanoantenna is implemented using finite element frequency domain (FEFD) solver where harvesting efficiency, field confinement, surface current, and input impedance are calculated at wavelength of 500 nm. The proposed nanoantennas achieve a harvesting efficiency of 61.3% and a field enhancement factor of 37.7 over the conventional dipole nanoantenna. This enhancement is attributed to the irregularity of the surface current distribution on the asymmetric designs. Particle swarm optimization technique is used to find the optimum design geometrical parameters through an external link between the optimization algorithm and the FEFD solver. Moreover, the proposed designs offer a resonance impedance of 500 Ω to match that of fabricated rectifiers. Further study of the structure fabrication tolerance is included which shows the robustness of the proposed nanoantennas.  相似文献   

17.
Distributed environmental mechanical energy is rarely collected due to its fluctuating amplitudes and low frequency, which is usually attributed as “random” energy. Considering the rapid development of the Internet of things (IoT), there is a great need for a large number of distributed and sustainable power sources. Here, a natural leaf assembled triboelectric nanogenerator (Leaf‐TENG) is designed by utilizing the green leaf as an electrification layer and electrode to effectively harvest environmental mechanical energy. The Leaf‐TENG with good adaptability has the maximum output power of ≈45 mW m?2, which is capable of driving advertising LEDs and commercial electronic temperature sensors. Besides, a tree‐shaped energy harvester is integrated with natural Leaf‐TENG to harvest large‐area environmental mechanical energy. This work provides a new prospect for distributed and environmental‐friendly power sources and has potential applications in the IoT and self‐powered systems.  相似文献   

18.
19.
Graphene-based laminate membranes with selective ion-transport capability show great potential in renewable osmotic energy harvesting. One of the great challenges is to reduce the overall energy barriers while remain the high ion selectivity in the transmembrane ion transport process. Here, a strategy is proposed to break the trade-off between ion selectivity and permeability in laminar nanochannels using amphiphilic molecules as modifier, which enhances the surface charge density of nanochannel by loading more ion polymer with polar head and lows the frictional force of ion transport with hydrophobic tail. The conversion efficiency can reach to 32% in osmotic energy harvesting (0.5 m /0.01 m concentration gradient) after adopting this modifier. During the process of mixing real river water and seawater, the maximum power density can reach to 13.38 W m−2. The amphiphilic molecules also bind adjacent nanosheets, endowing the membrane's strong mechanical strength and high stability in aqueous solution. This work can open up a new way to regulate the transmembrane ion transport in 2D laminate membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号