首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batteries with high energy and power densities along with long cycle life and acceptable safety at an affordable cost are critical for large‐scale applications such as electric vehicles and smart grids, but is challenging. Lithium–sulfur (Li‐S) batteries are attractive in this regard due to their high energy density and the abundance of sulfur, but several hurdles such as poor cycle life and inferior sulfur utilization need to be overcome for them to be commercially viable. Li–S cells with high capacity and long cycle life with a dual‐confined flexible cathode configuration by encapsulating sulfur in nitrogen‐doped double‐shelled hollow carbon spheres followed by graphene wrapping are presented here. Sulfur/polysulfides are effectively immobilized in the cathode through physical confinement by the hollow spheres with porous shells and graphene wrapping as well as chemical binding between heteronitrogen atoms and polysulfides. This rationally designed free‐standing nanostructured sulfur cathode provides a well‐built 3D carbon conductive network without requiring binders, enabling a high initial discharge capacity of 1360 mA h g?1 at a current rate of C/5, excellent rate capability of 600 mA h g?1 at 2 C rate, and sustainable cycling stability for 200 cycles with nearly 100% Coulombic efficiency, suggesting its great promise for advanced Li–S batteries.  相似文献   

2.
Hybrid sodium‐based dual‐ion capacitors (NDICs), which integrate the advantages of supercapacitors and sodium‐ion batteries, have attracted tremendous attention recently. In this work, hybrid sodium‐based dual‐ion capacitors are successfully developed with nitrogen‐doped microporous hard carbon as the cathode and soft carbon as the anode. N‐doping is beneficial to the functional groups, porous structure, and electric conductivity of hard carbon. Hybrid NDICs possess a wide voltage range (0.01–4.7 V), high‐energy density of 245.7 W h kg?1 at a power density of 1626 W kg?1, long cycle life (1000 cycles), and outstanding rate performance.  相似文献   

3.
Miscanthus is a C4 bioenergy perennial crop characterized by its high potential yield. Our study aimed to compare the carbon storage capacities of Miscanthus sinensis (M. sinensis) with that of Miscanthus × giganteus (M. × giganteus) in field conditions in different types of soils in France. We set up a multi‐environment experimental network. On each trial, we tested two treatments: M. × giganteus established from rhizomes (Gr) and M. sinensis transplanted seedlings (Sp). We quantified the soil organic carbon (SOC) stock at equivalent soil mass for both genotypes in 2014 and 2019 and for two sampling depths: L1 (ca. 0–5 cm) and L1‐2 (ca. 0–30 cm). We also calculated the total and annual variation of the SOC stock and investigated factors that could explain the variation and the initial state of the SOC stock. ANOVAs were performed to compare the SOC stock, as well as the SOC stock variation rates across treatments and soil layers. Results showed that the soil bulk density did not vary significantly between 2014 and 2019 for both treatments (Gr and Sp). The SOC concentration (i.e. SOC expressed in g/kg) increased significantly between 2014 and 2019 in L1, whereas no significant evolution was found in L2 (ca. 5–30 cm). The SOC stock (i.e. SOC expressed in t/ha) increased significantly in the superficial layer L1 for M. × giganteus and M. sinensis, by 0.48 ± 0.41 and 0.54 ± 0.25 t ha?1 year?1 on average, respectively, although no significant change was detected in the layer L1‐2 for both genotypes. Moreover, SOC stocks in 2019 did not differ significantly between M. × giganteus and M. sinensis in the soil layers L1 and L1‐2. Lastly, our results showed that the initial SOC stock was significantly higher when miscanthus was grown after set‐aside than after annual crops.  相似文献   

4.
Hard carbon has long been considered the leading candidate for anode materials of Na‐ion batteries. Intensive research efforts have been carried out in the search of suitable carbon structure for an improved storage capability. Herein, an anode based on multishelled hollow carbon nanospheres, which are able to deliver an outstanding electrochemical performance with an extraordinary reversible capacity of 360 mAh g?1 at 30 mA g?1, is designed. An interesting dependence of the electrochemical properties on the multishelled structural features is identified: with an increase in the shell number of the model carbon materials, the sloping capacity in the charge/discharge curve remains almost unchanged while the plateau capacity continuously increases, suggesting an adsorption‐filling Na‐storage mechanism for the multishelled hollow hard carbon materials. The findings not only provide new perspective in the structural design of high‐performance anode materials, but also shed light on the complicated mechanism behind Na‐storage by hard carbon.  相似文献   

5.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

6.
The pressing demand on the electronic vehicles with long driving range on a single charge has necessitated the development of next‐generation high‐energy‐density batteries. Non‐aqueous Li‐O2 batteries have received rapidly growing attention due to their higher theoretical energy densities compared to those of state‐of‐the‐art Li‐ion batteries.To make them practical for commercial applications, many critical issues must be overcome, including low round‐trip efficiency and poor cycling stability, which are intimately connected to the problems resulting from cathode degradation during cycling. Encouragingly, during the past years, much effort has been devoted to enhancing the stability of the cathode using a variety of strategies and these have effectively surmounted the challenges derived from cathode deteriorations,thus endowing Li‐O2 batteries with significantly improved electrochemical performances. Here, a brief overview of the general development of Li‐O2 battery is presented. Then, critical issues relevant to the cathode instability are discussed and remarkable achievements in enhancing the cathode stability are highlighted. Finally, perspectives towards the development of next generation highly stable cathode are also discussed.  相似文献   

7.
A general approach is developed for the synthesis of 2D porous carbon nanosheets (PCNS) from bio‐sources derived carbon precursors (gelatin) by an integrated procedure of intercalation, pyrolysis, and activation. Montmorillonite with layered nanospace is used as a nanotemplate or nanoreactor to confine and modulate the transformation of gelatin, further leading to the formation of 2D nanosheet‐shaped carbon materials. The as‐made 2D PCNS exhibits a significantly improved rate performance, with a high specific capacitance of 246 F g?1 and capacitance retention of 82% at 100 A g?1, being nearly twice that of microsized activated carbon particulates directly from gelatin (131 F g?1, 44%). The shortened ion transport distance in the nanoscaled dimension and modulated porous structure is responsible for such an enhanced superior rate capability. More importantly, the present strategy can be extended to other bio‐sources to create 2D PCNS as electrode materials with high‐rate performance. This will also provide a potential strategy for configuring 2D nanostructured carbon electrode materials with a short ion transport distance for supercapacitors and other carbon‐related energy storage and conversion devices.  相似文献   

8.
Molecular hydrogen can be generated renewably by water splitting with an “artificial‐leaf device”, which essentially comprises two electrocatalyst electrodes immersed in water and powered by photovoltaics. Ideally, this device should operate efficiently and be fabricated with cost‐efficient means using earth‐abundant materials. Here, a lightweight electrocatalyst electrode, comprising large surface‐area NiCo2O4 nanorods that are firmly anchored onto a carbon–paper current collector via a dense network of nitrogen‐doped carbon nanotubes is presented. This electrocatalyst electrode is bifunctional in that it can efficiently operate as both anode and cathode in the same alkaline solution, as quantified by a delivered current density of 10 mA cm?2 at an overpotential of 400 mV for each of the oxygen and hydrogen evolution reactions. By driving two such identical electrodes with a solution‐processed thin‐film perovskite photovoltaic assembly, a wired artificial‐leaf device is obtained that features a Faradaic H2 evolution efficiency of 100%, and a solar‐to‐hydrogen conversion efficiency of 6.2%. A detailed cost analysis is presented, which implies that the material‐payback time of this device is of the order of 100 days.  相似文献   

9.
The applications of carbon and carbon‐based materials with high porosity, high surface area, and functionalities based on metal‐organic framework precursors and/or templates have attracted significant research interest in recent years, particularly in the field of batteries. The chemical and physical properties of carbon and carbon‐based materials obtained by the heat treatment of various metal‐organic framework precursors or templates are improved to a certain extent. In this comprehensive review, the synthetic methods and electrochemical performance of carbon materials derived from metal‐organic frameworks (metal/carbon, metal oxide/carbon, nitrogen‐doped carbon, porous carbon, etc.) along with their applications in batteries are outlined.  相似文献   

10.
《Chirality》2017,29(1):33-37
Dehydrative cyclization of 4‐(D‐altro ‐pentitol‐1‐yl)2‐phenyl‐2H ‐1,2,3‐triazole in basic medium with one moler equivalent of p‐toluene sulfonyl chloride in pyridine solution gave the homo‐C‐ nucleoside 4‐(2,5‐anhydro‐D‐altro ‐1‐yl)‐2‐phenyl‐2H ‐1,2,3‐triazole. The structure and anomeric configuration was determined by acylation, nuclear magnetic resonance (NMR), and mass spectroscopy. The stereochemistry at the carbon bridge of homo‐C‐ nucleoside 2‐phenyl‐2H ‐1,2,3‐triazoles was determined by circular dichroism (CD) spectroscopy.  相似文献   

11.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks.  相似文献   

12.
Carbon (C) can be sequestered in the mineral soil after the conversion of intensively cropped agricultural fields to more extensive land uses such as afforested and natural succession ecosystems. Three land‐use treatments from the long‐term ecological research site at Kellogg biological station in Michigan were compared with a nearby deciduous forest. Treatments included a conventionally tilled cropland, a former cropland afforested with poplar for 10 years and an old field (10 years) succession. We used soil aggregate and soil organic matter fractionation techniques to isolate C pools that (1) have a high potential for C storage and (2) accumulate C at a fast rate during afforestation or succession. These fractions could serve as sensitive indicators for the total change in C content due to land‐use changes. At the mineral soil surface (0–7 cm), afforesting significantly increased soil aggregation to levels similar to native forest. However, surface soil (0–7 cm) C did not follow this trend: soil C of the native forest site (22.9 t C ha?1) was still significantly greater than the afforested (12.6 t C ha?1) and succession (15.4 t C ha?1) treatments. However, when the 0–50 cm soil layer was considered, no differences in total soil C were observed between the cropland and the poplar afforested system, while the successional system increased total soil C (0–50 cm) at a rate of 0.786 t C ha?1 yr?1. Afforested soils sequestered C mainly in the fine intra‐aggregate particulate organic matter (POM) (53–250 μm), whereas the successional soils sequestered C preferentially in the mineral‐associated organic matter and fine intra‐aggregate POM C pools.  相似文献   

13.
The ever‐increasing demand for large‐scale energy storage systems requires novel battery technologies with low‐cost and sustainable properties. Due to earth‐abundance and cost effectiveness, the development of rechargeable potassium ion batteries (PIBs) has recently attracted much attention. Since carbon‐based materials are abundant, inexpensive, nontoxic, and safe, extensive feasibility investigations have suggested that they can become promising anode materials for PIBs. This review not only attempts to provide better understanding of the potassium storage mechanism, but also summarizes the availability of new carbon‐based materials and their electrochemical performance covering graphite, graphene, and hard carbon materials plus carbon‐based composites. Finally, the critical issues, challenges, and perspectives are discussed to demonstrate the developmental direction of PIBs.  相似文献   

14.
15.
Hard carbons (HCs) are promising anodes of sodium‐ion batteries (SIBs) due to their high capacity, abundance, and low cost. However, the sodium storage mechanism of HCs remains unclear with no consensus in the literature. Here, based on the correlation between the microstructure and Na storage behavior of HCs synthesized over a wide pyrolysis temperature range of 600–2500 °C, an extended “adsorption–insertion” sodium storage mechanism is proposed. The microstructure of HCs can be divided into three types with different sodium storage mechanisms. The highly disordered carbon, with d002 (above 0.40 nm) large enough for sodium ions to freely transfer in, has a “pseudo‐adsorption” sodium storage mechanism, contributing to sloping capacity above 0.1 V, together with other conventional “defects” (pores, edges, heteroatoms, etc.). The pseudo‐graphitic carbon (d‐spacing in 0.36–0.40 nm) contributes to the low‐potential (<0.1 V) plateau capacity through “interlayer insertion” mechanism, with a theoretical capacity of 279 mAh g?1 for NaC8 formation. The graphite‐like carbon with d002 below 0.36 nm is inaccessible for sodium ion insertion. The extended “adsorption–insertion” model can accurately explain the dependence of the sodium storage behavior of HCs with different microstructures on the pyrolysis temperature and provides new insight into the design of HC anodes for SIBs.  相似文献   

16.
17.
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m?2 y?1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m?2 y?1 and 33.2 g C m?2 y?1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.  相似文献   

18.
Searching for a new material to build the next‐generation rechargeable lithium‐ion batteries (LIBs) with high electrochemical performance is urgently required. Owing to the low‐cost, non‐toxicity, and high‐safety, the family of manganese oxide including the Na‐Mn‐O system is regarded as one of the most promising electrode materials for LIBs. Herein, a new strategy is carried out to prepare a highly porous and electrochemically active Na0.55Mn2O4·1.5H2O (SMOH) compound. As an anode material, the Na‐Mn‐O nanocrystal material dispersed within a carbon matrix manifests a high reversible capacity of 1015.5 mA h g?1 at a current density of 0.1 A g?1. Remarkably, a considerable capability of 546.8 mA h g?1 remains even after 2000 discharge/charge cycles at the higher current density of 4 A g?1, indicating a splendid cyclability. The exceptional electrochemical properties allow SMOH to be a promising anode material toward LIBs.  相似文献   

19.
Interannual variability in biosphere‐atmosphere exchange of CO2 is driven by a diverse range of biotic and abiotic factors. Replicating this variability thus represents the ‘acid test’ for terrestrial biosphere models. Although such models are commonly used to project responses to both normal and anomalous variability in climate, they are rarely tested explicitly against inter‐annual variability in observations. Herein, using standardized data from the North American Carbon Program, we assess the performance of 16 terrestrial biosphere models and 3 remote sensing products against long‐term measurements of biosphere‐atmosphere CO2 exchange made with eddy‐covariance flux towers at 11 forested sites in North America. Instead of focusing on model‐data agreement we take a systematic, variability‐oriented approach and show that although the models tend to reproduce the mean magnitude of the observed annual flux variability, they fail to reproduce the timing. Large biases in modeled annual means are evident for all models. Observed interannual variability is found to commonly be on the order of magnitude of the mean fluxes. None of the models consistently reproduce observed interannual variability within measurement uncertainty. Underrepresentation of variability in spring phenology, soil thaw and snowpack melting, and difficulties in reproducing the lagged response to extreme climatic events are identified as systematic errors, common to all models included in this study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号