首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Relaxor ferroelectrics usually possess low remnant polarizations and slim hystereses, which can provide high saturated polarizations and superior energy conversion efficiencies, thus receiving increasing interest as energy storage materials with high discharge energy densities and fast discharge ability. In this study, a relaxor ferroelectric multilayer energy storage ceramic capacitor (MLESCC) based on 0.87BaTiO3‐0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 (BT‐BZNT) with inexpensive Ag/Pd inner electrodes is prepared by the tape casting method. The MLESCC with two dielectric layers (layer thicknesses of 5 µm) sintered by a two‐step sintering method exhibits excellent energy storage properties with a record‐high discharge energy density of 10.12 J cm?3, a high energy efficiency of 89.4% achieved at an electric field of 104.7 MV m?1, a high temperature stability of the energy storage density (with minimal variation of <±5%), and energy efficiency (>90%) over a range of ?75 to 150 °C at 40 MV m?1. These results suggest that the BT‐BZNT relaxor ferroelectric ceramic material can provide realistic solutions for high‐power energy storage capacitors.  相似文献   

2.
Solar steam generation has been proven to be one of the most efficient approaches for harvesting solar energy for diverse applications such as distillation, desalination, and production of freshwater. Here, the synthesis of monolithic carbon aerogels by facile carbonization of conjugated microporous polymer nanotubes as efficient solar steam generators is reported. The monolithic carbon‐aerogel networks consist of randomly aggregated hollow‐carbon‐nanotubes (HCNTs) with 100–250 nm in diameter and a length of up to several micrometers to form a hierarchically nanoporous network structure. Treatment of the HCNTs aerogels with an ammonium peroxydisulfate/sulfuric acid solution endows their superhydrophilic wettability which is beneficial for rapid transportation of water molecules. In combination with their abundant porosity (92%) with open channel structure, low apparent density (57 mg cm?3), high specific surface area (826 m2 g?1), low thermal conductivity (0.192 W m?1 K?1), and broad light absorption (99%), an exceptionally high conversion efficiency of 86.8% is achieved under 1 sun irradiation, showing great potential as an efficient photothermal material for solar steam generation. The findings may provide a new opportunity for tailored design and creation of new carbon‐aerogels‐based photothermal materials with adjustable structure, tunable porosity, simple fabrication process, and high solar energy conversion efficiency for solar steam generation.  相似文献   

3.
The polyanion Li7V15O36(CO3) is a nanosized molecular cluster (≈1 nm in size), that has the potential to form an open host framework with a higher surface‐to‐bulk ratio than conventional transition metal oxide electrode materials. Herein, practical rechargeable Na‐ion batteries and symmetric Li‐ion batteries are demonstrated based on the polyoxovanadate Li7V15O36(CO3). The vanadium centers in {V15O36(CO3)} do not all have the same VIV/V redox potentials, which permits symmetric devices to be created from this material that exhibit battery‐like energy density and supercapacitor‐like power density. An ultrahigh specific power of 51.5 kW kg?1 at 100 A g?1 and a specific energy of 125 W h kg?1 can be achieved, along with a long cycling life (>500 cycles). Moreover, electrochemical and theoretical studies reveal that {V15O36(CO3)} also allows the transport of large cations, like Na+, and that it can serve as the cathode material for rechargeable Na‐ion batteries with a high specific capacity of 240 mA h g?1 and a specific energy of 390 W h kg?1 for the full Na‐ion battery. Finally, the polyoxometalate material from these electrochemical energy storage devices can be easily extracted from spent electrodes by simple treatment with water, providing a potential route to recycling of the redox active material.  相似文献   

4.
Wind is one of the most important sources of green energy, but the current technology for harvesting wind energy is only effective when the wind speed is beyond 3.5–4.0 m s?1. This is mainly due to the limitation that the electromagnetic generator works best at high frequency. This means that light breezes cannot reach the wind velocity threshold of current wind turbines. Here, a high‐performance triboelectric nanogenerator (TENG) for efficiently harvesting energy from an ambient gentle wind, especially for speeds below 3 m s?1 is reported, by taking advantage of the relative high efficiency of TENGs at low‐frequency. Attributed to the multiplied‐frequency vibration of ultra‐stretchable and perforated electrodes, an average output of 20 mW m?3 can be achieved with inlet wind speed of 0.7 m s?1, while an average energy conversion efficiency of 7.8% at wind speed of 2.5 m s?1 is reached. A self‐charging power package is developed and the applicability of the TENG in various light breezes is demonstrated. This work demonstrates the advantages of TENG technology for breeze energy exploitation and proposes an effective supplementary approach for current employed wind turbines and micro energy structure.  相似文献   

5.
Rechargeable aqueous zinc‐ion batteries (ZIBs) are appealing due to their high safety, zinc abundance, and low cost. However, developing suitable cathode materials remains a great challenge. Herein, a novel 2D heterostructure of ultrathin amorphous vanadium pentoxide uniformly grown on graphene (A‐V2O5/G) with a very short ion diffusion pathway, abundant active sites, high electrical conductivity, and exceptional structural stability, is demonstrated for highly reversible aqueous ZIBs (A‐V2O5/G‐ZIBs), coupling with unprecedented high capacity, rate capability, long‐term cyclability, and excellent safety. As a result, 2D A‐V2O5/G heterostructures for stacked ZIBs at 0.1 A g?1 display an ultrahigh capacity of 489 mAh g?1, outperforming all reported ZIBs, with an admirable rate capability of 123 mAh g?1 even at 70 A g?1. Furthermore, the new‐concept prototype planar miniaturized zinc‐ion microbatteries (A‐V2O5/G‐ZIMBs), demonstrate a high volumetric capacity of 20 mAh cm?3 at 1 mA cm?2, long cyclability; holding high capacity retention of 80% after 3500 cycles, and in‐series integration, demonstrative of great potential for highly‐safe microsized power sources. Therefore, the exploration of such 2D heterostructure materials with strong synergy is a reliable strategy for developing safe and high‐performance energy storage devices.  相似文献   

6.
In this study, hierarchically nanoporous pyropolymers (HN‐PPs) including numerous redox‐active heteroatoms are fabricated from polyaniline nanotubes by heating with KOH. In the large operating voltage range 1.0–4.8 V versus Li+/Li, HN‐PPs store amphicharges by a pseudocapacitive manner of Li‐ion (mainly <3.0 V) and electrochemical double layer formation of anion (primarily >3.0 V). Through these surface‐driven charge storage behaviors, HN‐PPs achieve a significantly high specific capacity of ≈460 mA h g?1 at 0.5 A g?1, maintaining specific capacities of 140 mA h g?1 at a high specific current of 30 A g?1 and 305 mA h g?1 after 2000 cycles at 3 A g?1. Furthermore, asymmetric energy storage devices based on HN‐PPs deliver a high specific energy of 265 W h kg?1 and high specific power of 5081 W kg?1 with long‐term cycling performance.  相似文献   

7.
Piezoelectric ZnO nanorods grown on a flexible substrate are combined with the p‐type semiconducting polymer PEDOT:PSS to produce a p‐n junction device that successfully demonstrates kinetic‐to‐electrical energy conversion. Both the voltage and current output of the devices are measured to be in the range of 10 mV and 10 μA cm?2. Combining these figures for the best device gives a maximum possible power density of 0.4 mW cm?3. Systematic testing of the devices is performed showing that the voltage output increases linearly with applied stress, and is reduced significantly by illumination with super‐band gap light. This provides strong evidence that the voltage output results from piezoelectric effects in the ZnO. The behavior of the devices is explained by considering the time‐dependent changes in band structure resulting from the straining of a piezoelectric material within a p‐n junction. It is shown that the rate of screening of the depolarisation field determines the power output of a piezoelectric energy harvesting device. This model is consistent with the behavior of a number of previous devices utilising the piezoelectric effect in ZnO.  相似文献   

8.
Sugar beet (Beta vulgaris L. subsp. vulgaris) is deemed to be one of the most promising bioethanol feedstock crops in northern Japan. To establish viable sugar beet‐based bioethanol production systems, energy‐efficient protocols in sugar beet cultivation are being intensively sought. On this basis, the effects of alternative agronomic practices for sugar beet production on total energy inputs (from fuels and agricultural materials during cultivation and transportation) and ethanol yields (estimated from sugar yields) were assessed in terms of (i) direct drilling, (ii) reduced tillage (no moldboard plowing), (iii) no‐fungicide application, (iv) using a high‐yielding beet genotype, (v) delayed harvesting and (vi) root+crown harvesting. Compared with the conventional sugar beet production system used in the Tokachi region of Hokkaido, northern Japan, which makes use of transplants, direct drilling and no‐fungicide application contributed to reduced energy inputs from raising seedlings and fungicides, respectively, but sugar (or ethanol) yields were also reduced by these practices, to a greater equivalent extent than the reductions in energy inputs. Consequently, direct drilling (6.84 MJ L?1) and no‐fungicide application (7.78 MJ L?1) worsened the energy efficiency (total energy inputs to produce 1 L of ethanol), compared with conventional sugar beet production practices (5.82 MJ L?1). Sugar yields under conventional plow‐based tillage and reduced tillage practices were similar, but total energy inputs were reduced as a result of reduced fuel consumption from not plowing. Hence, reduced tillage showed improved energy efficiency (5.36 MJ L?1). The energy efficiency was also improved by using a high‐yielding genotype (5.23 MJ L?1) and root+crown harvesting (5.21 MJ L?1). For these practices, no major changes in total energy inputs were noted, but sugar yields were consistently increased. Neither total energy inputs nor ethanol yields were affected by extending the vegetative growing period by delaying harvesting.  相似文献   

9.
Realizing energy harvesting from water flow using triboelectric generators (TEGs) based on our daily wearable fabric or textile has practical significance. Challenges remain on methods to fabricate conformable TEGs that can be easily incorporated into waterproof textile, or directly harvest energy from water using hydrophobic textile. Herein, a wearable all‐fabric‐based TEG for water energy harvesting, with additional self‐cleaning and antifouling properties is reported for the first time. Hydrophobic cellulose oleoyl ester nanoparticles (HCOENPs) are prepared from microcrystalline cellulose, as a low‐cost and nontoxic coating material to achieve superhydrophobic coating on fabrics, including cotton, silk, flax, polyethylene terephthalate (PET), polyamide (nylon), and polyurethane. The resultant PET fabric‐based water‐TEG can generate an instantaneous output power density of 0.14 W m?2 at a load resistance of 100 MΩ. An all‐fabric‐based dual‐mode TEG is further realized to harvest both the electrostatic energy and mechanical energy of water, achieving the maximum instantaneous output power density of 0.30 W m?2. The HCOENPs‐coated fabric provides excellent breathability, washability, and environmentally friendly fabric‐based TEGs, making it a promising wearable self‐powered system.  相似文献   

10.
With the solar panels quickly spreading across the rooftops worldwide, solar power is now very popular. However, the output of the solar cell panels is highly dependent on weather conditions, making it rather unstable. Here, a hybridized power panel that can simultaneously generate power from sunlight, raindrop, and wind is proposed and demonstrated, when any or all of them are available in ambient environment. Without compromising the output performance and conversion efficiency of the solar cell itself, the presented hybrid cell can deliver an average output of 86 mW m?2 from the water drops at a dripping rate of 13.6 mL s?1, and an average output of 8 mW m?2 from wind at a speed of 2.7 m s?1, which is an innovative energy compensation to the common solar cells, especially in rainy seasons or at night. Given the compelling features, such as cost‐effectiveness and a greatly expanded working time, the reported hybrid cell renders an innovative way to realize multiple kinds of energy harvesting and as an useful compensation to the currently widely used solar cells. The demonstrated concept here will possibly be adopted in a variety of circumstances and change the traditional way of solar energy harvesting.  相似文献   

11.
Rechargeable aqueous batteries with Zn2+ as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g?1 at 0.1 A g?1, and the capacity retention rate is 94% after 2000 cycles at 2 A g?1 and 83% after 10 000 cycles at 5 A g?1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8 layered structure in NaCaVO is energetically favorable for Zn2+ diffusion and the structural water situated between V3O8 layers promotes a fast charge‐transfer and bulk migration of Zn2+ by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+ and Ca2+ alternately suited in V3O8 layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability.  相似文献   

12.
13.
An acoustic wave is a type of energy that is clean and abundant but almost totally unused because of its very low density. This study investigates a novel dual‐tube Helmholtz resonator‐based triboelectric nanogenerator (HR‐TENG) for highly efficient harvesting of acoustic energy. This HR‐TENG is composed of a Helmholtz resonant cavity, a metal film with evenly distributed acoustic holes, and a dielectric soft film with one side ink‐printed for electrode. Effects of resonant cavity structure, acoustic conditions, and film tension on the HR‐TENG performance are investigated systematically. By coupling the mechanisms of triboelectric nanogenerator and acoustic propagation, a theoretical guideline is provided for improving energy output and broadening the frequency band. Specifically, the present HR‐TENG generates the maximum acoustic sensitivity per unit area of 1.23 VPa?1 cm?2 and the maximum power density per unit sound pressure of 1.82 WPa?1 m?2, which are higher than the best results from the literature by 60 and 20%, respectively. In addition, the HR‐TENG may also serve as a self‐powered acoustic sensor.  相似文献   

14.
Among many other requirements, energy efficient building materials require effective daylight harvesting and thermal insulation to reduce electricity usage and weatherization cost. The most commonly used daylight harvesting material, glass, has limited light management capability and poor thermal insulation. For the first time, transparent wood is introduced as a building material with the following advantages compared with glass: (1) high optical transparency over the visible wavelength range (>85%); (2) broadband optical haze (>95%), which can create a uniform and consistent daylight distribution over the day without glare effect; (3) unique light guiding effect with a large forward to back scattering ratio of 9 for a 0.5 cm thick transparent wood; (4) excellent thermal insulation with a thermal conductivity around 0.32 W m?1 K?1 along the wood growth direction and 0.15 W m?1 K?1 in the cross plane, much lower than that of glass (≈1 W m?1 K?1); (5) high impact energy absorption that eliminates the safety issues often presented by glass; and (6) simple, scalable fabrication with reliable performance. The demonstrated transparent wood composite exhibits great promise as a future building material, especially as a replacement of glass toward energy efficient building with sustainable materials.  相似文献   

15.
Dielectric capacitors have become a key enabling technology for electronics and electrical systems. Although great strides have been made in the development of ferroelectric ceramic and thin films for capacitors, much less attention has been given to preventing polarization fatigue, while improving the energy density, of ferroelectrics. Here superior capacitive properties and outstanding stability are reported over 107 charge/discharge cycles and a wide temperature range of ?60 to 200 °C of ferroelectric Aurivillius phase Bi3.25La0.75Ti3O12‐BiFeO3 (BLT‐BFO), which represents one of the best capacitive performances recorded for the ferroelectric materials. The modification of BLT thin films with BFO overcomes the constraints of ferroelectric Aurivillius compounds and presents an unprecedented combination of the ideal features including improved polarization, reduced ferroelectric hysteresis, and lowered leakage current for high‐energy‐density capacitors. Given the lead‐free and fatigue‐free nature of this Aurivillius phase ferroelectric, this work unveils a new approach towards high‐performance eco‐friendly ferroelectric materials for electrical energy storage applications.  相似文献   

16.
Ubiquitous low‐grade thermal energy, which is typically wasted without use, can be extremely valuable for continuously powering electronic devices such as sensors and wearable electronics. A popular choice for waste heat recovery has been thermoelectric energy conversion, but small output voltage without energy‐storing capability necessitates additional components such as a voltage booster and a capacitor. Here, a novel method of simultaneously generating a large voltage from a temperature gradient and storing electrical energy without losing the benefit of solid‐state no‐moving part devices like conventional thermoelectrics is reported. Thermally driven ion diffusion is used to greatly increase the output voltage (8 mV K?1) with polystyrene sulfonic acid (PSSH) film. Polyaniline‐coated electrodes containing graphene and carbon nanotube sandwich the PSSH film where thermally induced voltage‐enabled electrochemical reactions, resulting in a charging behavior without an external power supply. With a small temperature difference (5 K) possibly created over wearable energy harvesting devices, the thermally chargeable supercapacitor produce 38 mV with a large areal capacitance (1200 F m?2). It is anticipated that the attempt with thermally driven ion diffusion behaviors initiates a new research direction in thermal energy harvesting.  相似文献   

17.
Twenty modified‐Whittaker plots were stratified at different sampling locations from February to May of 2008 in the central zone of Korup National Park, Cameroon. Our interest was to assess floristic diversity and investigate their relationship with environmental variables. Diversity profiles and rank abundance–curves were used for diversity analysis while canonical correspondence analysis and species–response curves were used to investigate the relationships between the response and explanatory variables. Of the 66 families identified, the Rubiaceae (999 species) were the most abundant. The Sterculiaceae (basal area = 10.482 m2 ha?1) were the dominant family, while the co‐dominant families included the Ebenaceae (basal area = 9.092 m2 ha?1) and the Euphorbiaceae (basal area = 8.168 m2 ha?1). Soil variables explained 54.3% of total variation in family distribution. Canonical axes were related to different environmental gradients: axis1 was related to increasing canopy cover (r = 0.6951); axis 2, increasing Magnesium (r = 0.8465) and effective cation exchange capacity (r = 0.5899); axis 3, increasing effective cation exchange capacity (r = 0.5536); while axis 4, increasing Phosphorus concentration (r = 0.5232). Our results demonstrate the advantage which diversity profiles have over single or combination of indices, and the importance of using a combination of methodologies in diversity analysis.  相似文献   

18.
Sodium‐ion batteries (SIBs) that operate in a wide temperature range are in high demand for practical large‐scale electric energy storage. Herein, a novel full SIB is composed of a bulk Bi anode, a Na3V2(PO4)3/carbon nanotubes composite (NVP‐CNTs) cathode and a NaPF6‐diglyme electrolyte. The Bi anode gradually evolves into a porous network in the ether‐based electrolyte during initial cycles, and in the NVP‐CNTs cathode the NVP is cross linked by CNTs to show large exchange current density. These unique features merit the full SIB of Bi//NVP‐CNTs with high Na+ diffusion coefficient and low reaction activation energy, and hence fast Na+ transport and facile redox reaction kinetics. The resultant full SIB presents high power density of 2354.6 W kg?1 and energy density of 150 Wh kg?1 and superior cycling stability in a wide temperature range from ?15 to 45 °C. This will shed light on battery design, and promote their development for practical applications in various weather conditions.  相似文献   

19.
Trogtalite CoSe2 nanobuds encapsulated into boron and nitrogen codoped graphene (BCN) nanotubes (CoSe2@BCN‐750) are synthesized via a concurrent thermal decomposition and selenization processes. The CoSe2@BCN‐750 nanotubes deliver an excellent storage capacity of 580 mA h g?1 at current density of 100 mA g?1 at 100th cycle, as the anode of a sodium ion battery. The CoSe2@BCN‐750 nanotubes exhibit a significant rate capability (100–2000 mA g?1 current density) and high stability (almost 98% storage retention after 4000 cycles at large current density of 8000 mA g?1). The reasons for these excellent storage properties are illuminated by theoretical calculations of the relevant models, and various possible Na+ ion storage sites are identified through first‐principles calculations. These results demonstrate that the insertion of heteroatoms, B–C, N–C as well as CoSe2, into BCN tubes, enables the observed excellent adsorption energy of Na+ ions in high energy storage devices, which supports the experimental results.  相似文献   

20.
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号