首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced graphene oxides (rGO) are synthesized via reduction of GO with reducing agents as a hole‐extraction layer for high‐performance inverted planar heterojunction perovskite solar cells. The best efficiencies of power conversion (PCE) of these rGO cells exceed 16%, much greater than those made of GO and poly(3,4‐ethenedioxythiophene):poly(styrenesulfonate) films. A flexible rGO device shows PCE 13.8% and maintains 70% of its initial performance over 150 bending cycles. It is found that the hole‐extraction period is much smaller for the GO/methylammonium lead‐iodide perovskite (PSK) film than for the other rGO/PSK films, which contradicts their device performances. Photoluminescence and transient photoelectric decays are measured and control experiments are performed to prove that the reduction of the oxygen‐containing groups in GO significantly decreases the ability of hole extraction from PSK to rGO and also retards the charge recombination at the rGO/PSK interface. When the hole injection from PSK to GO occurs rapidly, hole propagation from GO to the indium‐doped tin oxide (ITO) substrate becomes a bottleneck to overcome, which leads to a rapid charge recombination that decreases the performance of the GO device relative to the rGO device.  相似文献   

2.
The limits of maximizing the open‐circuit voltage Voc in solar cells based on poly[2,7‐(9,9‐didecylfluorene)‐alt‐5,5‐(4,7‐di‐2‐thienyl‐2,1,3‐benzothiadiazole)] (PF10TBT) as a donor using different fullerene derivatives as acceptor are investigated. Bulk heterojunction solar cells with PF10TBT and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) give a Voc over 1 V and a power conversion efficiency of 4.2%. Devices in which PF10TBT is blended with fullerene bisadduct derivatives give an even higher Voc, but also a strong decrease in short circuit current (Jsc). The higher Voc is attributed to the higher LUMO of the acceptors in comparison to PCBM. By investigating the photophysics of PF10TBT:fullerene blends using near‐IR photo‐ and electroluminescence, time‐resolved photoluminescence, and photoinduced absorption we find that the charge transfer (CT) state is not formed efficiently when using fullerene bisadducts. Hence, engineering acceptor materials with a LUMO level that is as high as possible can increase Voc, but will only provide a higher power conversion efficiency, when the quantum efficiency for charge transfer is preserved. To quantify this, we determine the CT energy (ECT) and optical band gap (Eg), defined as the lowest first singlet state energy ES1 of either the donor or acceptor, for each of the blends and find a clear correlation between the free energy for photoinduced electron transfer and Jsc. We find that Eg ? qVoc > 0.6 eV is a simple, but general criterion for efficient charge generation in donor‐acceptor blends.  相似文献   

3.
All‐inorganic CsPbIBr2 perovskite solar cells (pero‐SCs) exhibit excellent overall stability, but their power conversion efficiencies (PCEs) are greatly limited by their wide bandgaps. Integrated solar cells (ISCs) are considered to be an emergent technology that could extend their photoresponse by directly stacking two distinct photoactive layers with complementary bandgaps. However, rising photocurrents always sacrifice other photovoltaic parameters, thereby leading to an unsatisfactory PCE. Here, a recast strategy is proposed to optimize the spatial distribution components of low‐bandgap organic bulk‐heterojunction (BHJ) film, and is combined with an all‐inorganic perovskite to construct perovskite/BHJ ISCs. With this strategy, the integrated perovskite/BHJ film with a top‐enriched donor‐material spatial distribution is shown to effectively improve ambipolar charge transport behavior and suppress charge carrier recombination. For the first time, the ISC is not only significantly extended and enhanced the photoresponse achieving a 20% increase in current density, but also exhibits a high open‐circuit voltage and fill factor at the same time. As a result, a record PCE of 11.08% based on CsPbIBr2 pero‐SCs is realized; it simultaneously shows excellent long‐term stability against heat and ultraviolet light.  相似文献   

4.
Even though significant breakthroughs with over 18% power conversion efficiencies (PCEs) in polymer:non‐fullerene acceptor (NFA) bulk heterojunction organic solar cells (OSCs) have been achieved, not many studies have focused on acquiring a comprehensive understanding of the underlying mechanisms governing these systems. This is because it can be challenging to delineate device photophysics in polymer:NFA blends comprehensively, and even more complicated to trace the origins of the differences in device photophysics to the subtle differences in energetics and morphology. Here, a systematic study of a series of polymer:NFA blends is conducted to unify and correlate the cumulative effects of i) voltage losses, ii) charge generation efficiencies, iii) non‐geminate recombination and extraction dynamics, and iv) nuanced morphological differences with device performances. Most importantly, a deconvolution of the major loss processes in polymer:NFA blends and their connections to the complex BHJ morphology and energetics are established. An extension to advanced morphological techniques, such as solid‐state NMR (for atomic level insights on the local ordering and donor:acceptor π? π interactions) and resonant soft X‐ray scattering (for donor and acceptor interfacial area and domain spacings), provide detailed insights on how efficient charge generation, transport, and extraction processes can outweigh increased voltage losses to yield high PCEs.  相似文献   

5.
Two novel cyano‐containing oligo(phenylenevinylene) (OPV) derivatives have been designed and synthesized. Photophysical and sensing properties of the two compounds were studied. Such studies reveal the intramolecular charge transfer process between cyano groups and OPV core. The results showed that the alkyl difference of substituted OPV leads to the changes of molecular configuration and metallo‐response of two compounds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Photoluminescence studies of the charge transfer exciton emission from a narrow‐bandgap polymer‐based bulk heterojunction are reported. The quantum yield of this emission is as high as 0.03%. Low temperature measurements reveal that while the dynamics of the singlet exciton is slower at low temperature, the dynamics of the charge transfer exciton emission is temperature independent. This behavior rules out any diffusion process of the charge transfer excitons and energy transfer from these interfacial states toward lower lying states. Photoluminescence measurements performed on the device under bias show a reduction (but not the total suppression) of the charge transfer exciton recombination. Finally, based on the low temperature results the role of the charge transfer excitons and the possible pathways to populate them are identified.  相似文献   

7.
8.
The role of the contacts in thin‐film, blended heterojunctions (<100 nm thick) organic photovoltaics is explored, specifically considering concepts of carrier selectivity, injection, and extraction efficiency, relative to recombination. Contact effects are investigated by comparing two hole‐collecting interlayers: a phosphonic acid monolayer on indium tin oxide (ITO) and a nickel oxide thin film. The interlayers have equivalent work functions (≈5.4 eV) but widely variant energy band offsets relative to the lowest unoccupied molecular orbital of the acceptor (electron blocking versus not), which are coupled to large differences in carrier density. Trends in open‐circuit voltages (VOC) as a function of light intensity and temperature are compared and it is concluded that the dominant mechanism limiting VOC for high density of states contacts is free carrier injection, not surface recombination or extraction barriers. Transient photocurrent decay measurements confirm excess reinjected carriers decrease the extraction efficiency via increased recombination and decrease free carrier lifetime, even at high internal electric fields, due to space charge accumulation. These results demonstrate that the energetics and injection dynamics of the interface between interlayers and high carrier density electrodes (typically ITO and metals) must be considered with fabrication and processing of interlayers, in addition to possible carrier selectivity and the interface with the active layer.  相似文献   

9.
The photoinduced open‐circuit voltage (Voc) loss commonly observed in bulk heterojunction organic solar cells made from amorphous polymers is investigated. It is observed that the total charge carrier density and, importantly, the recombination dynamics are unchanged by photoinduced burn‐in. Charge extraction is used to monitor changes in the density of states (DOS) during degradation of the solar cells, and a broadening over time is observed. It is proposed that the Voc losses observed during burn‐in are caused by a redistribution of charge carriers in a broader DOS. The temperature and light intensity dependence of the Voc losses can be described with an analytical model that contains the amount of disorder broadening in a Gaussian DOS as the only fit parameter. Finally, the Voc loss in solar cells made from amorphous and crystalline polymers is compared and an increased stability observed in crystalline polymer solar cells is investigated. It is found that solar cells made from crystalline materials have a considerably higher charge carrier density than those with amorphous materials. The effects of a DOS broadening upon aging are suppressed in solar cells with crystalline materials due to their higher carrier density, making crystalline materials more stable against Voc losses during burn‐in.  相似文献   

10.
Perylenes are well‐known pigments with excellent chemical, thermal, and photochemical stabilities and have been used in various optical and electronic fields. Although for sensitized mesoscopic solar cells there is rapid progress of metal‐free thiophene dyes, which now reach over 11.5% power conversion efficiency (PCE) at air mass 1.5 global (AM1.5G) conditions, the so far reported highest PCE of a perylene dye is only 6.8%. Here, a new metal‐free organic donor‐acceptor (D‐A) dye ( C261 ) featuring a bisarylamino functionalized N‐annulated perylene electron‐releasing segment and a cyanoacrylic acid electron‐withdrawing unit is synthesized. Combining a mesoporous titania film grafted by this structurally simple perylene dye with a non‐corrosive cobalt redox shuttle, an 8.8% PCE is achieved at an irradiance of the AM1.5G sunlight. By selecting the model dye G221 as a reference, theoretical calculations, steady‐state and time‐resolved spectroscopies, and electrical measurements are used to compare the energy‐levels, light absorptions, and mutichannel charge transfer dynamics that contribute to the photovoltaic behavior.  相似文献   

11.
The effect of solvents of varying polarity on the absorption and fluorescence emission of the Schiff base, 2‐{[3‐(1H‐benzimidazole‐2‐yl) phenyl]carbonoimidoyl}phenol, was studied using Lippert‐Mataga bulk polarity function, Reichardt's microscopic solvent polarity parameter and Kamlet's multiple linear regression approach. The spectral properties follow Reichardt's microscopic solvent polarity parameter better than Lippert‐Mataga bulk polarity parameter, indicating the presence of both general solute–solvent interactions and specific interactions. Catalan's multiple linear regression approach indicates the major role of solvent polarizability/dipolarity influence compared with solvent acidity or basicity. The solvatochromic effect was utilized to calculate the dipole moments of ground and excited states of the Schiff base using different methods. Bathochromic shift in the emission spectrum and the increase in dipole moment in the excited state signifies the intramolecular charge transfer character in the emitting singlet state. Fluorescence quenching by aniline was also studied in 1,4‐dioxane and n‐butanol, and the results were analyzed using sphere of action static quenching and finite sink approximation models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Two types of all‐small‐molecule ternary solar cells consisting of two small‐molecule donors and one acceptor (fullerene/non‐fullerene) are developed. Interestingly, both these devices have a common component: a carefully designed medium bandgap small molecule, which possesses appropriate energy levels and displays good compatibility with the host donor. In the fullerene system, the charge‐relaying role of the additive donor is confirmed by the improved charge transportation and suppressed charge recombination. While in the non‐fullerene system, the mixed face‐on and edge‐on orientation of the ternary film induced by the additive donor dominates the promotion of charge transportation. Accordingly, both ternary devices deliver higher short‐circuit current density, fill factor, and power conversion efficiencies of over 10% compared to binary ones. This work offers a promising guideline on the construction of high‐performance all‐small‐molecule ternary solar cells by incorporating a miscible small‐molecule donor.  相似文献   

13.
Understanding the correlation between polymer aggregation, miscibility, and device performance is important to establish a set of chemistry design rules for donor polymers with nonfullerene acceptors (NFAs). Employing a donor polymer with strong temperature‐dependent aggregation, namely PffBT4T‐2OD [poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3″′‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2″′‐quaterthiophen‐5,5‐diyl)], also known as PCE‐11 as a base polymer, five copolymer derivatives having a different thiophene linker composition are blended with the common NFA O‐IDTBR to investigate their photovoltaic performance. While the donor polymers have similar optoelectronic properties, it is found that the device power conversion efficiency changes drastically from 1.8% to 8.7% as a function of thiophene content in the donor polymer. Results of structural characterization show that polymer aggregation and miscibility with O‐IDTBR are a strong function of the chemical composition, leading to different donor–acceptor blend morphology. Polymers having a strong tendency to aggregate are found to undergo fast aggregation prior to liquid–liquid phase separation and have a higher miscibility with NFA. These properties result in smaller mixed donor–acceptor domains, stronger PL quenching, and more efficient exciton dissociation in the resulting cells. This work indicates the importance of both polymer aggregation and donor–acceptor interaction on the formation of bulk heterojunctions in polymer:NFA blends.  相似文献   

14.
Organic–inorganic hybrid perovskite solar cells based on CH3NH3PbI3 have achieved great success with efficiencies exceeding 20%. However, there are increasing concerns over some reported efficiencies as the cells are susceptible to current–voltage (I–V) hysteresis effects. It is therefore essential that the origins and mechanisms of the I–V hysteresis can clearly be understood to minimize or eradicate these hysteresis effects completely for reliable quantification. Here, a detailed electro‐optical study is presented that indicates the hysteresis originates from lingering processes persisting from sub‐second to tens of seconds. Photocurrent transients, photoluminescence, electroluminescence, quasi‐steady state photoinduced absorption processes, and X‐ray diffraction in the perovskite solar cell configuration have been monitored. The slow processes originate from the structural response of the CH3NH3PbI3 upon E‐field application and/or charge accumulation, possibly involving methylammonium ions rotation/displacement and lattice distortion. The charge accumulation can arise from inefficient charge transfer at the perovskite interfaces, where it plays a pivotal role in the hysteresis. These findings underpin the significance of efficient charge transfer in reducing the hysteresis effects. Further improvements of CH3NH3PbI3‐based perovskite solar cells are possible through careful surface engineering of existing TiO2 or through a judicious choice of alternative interfacial layers.  相似文献   

15.
With the recent developments in the efficiency of perovskite solar cells (PSCs), diverse functionalities are necessary for next‐generation charge‐transport layers. Specifically, the hole‐transport layer (HTL) in the various synthesized materials modified with functional groups is explored. A novel donor–acceptor type polymer, alkoxy‐PTEG, composed of benzo[1,2‐b:4,5:b′]dithiophene and tetraethylene glycol (TEG)‐substituted 2,1,3‐benzothiadiazole is reported. The alkoxy‐PTEG exhibits high solubility even in nonaromatic solvents, such as 3‐methylcyclohexanone (3‐MC), and can prevent possible lead leakage via chelation. The optical and electronic properties of alkoxy‐PTEG are thoroughly analyzed. Finally, a dopant‐free alkoxy‐PTEG device processed with 3‐MC exhibits 19.9% efficiency and a device with 2‐methyl anisole, which is a reported aromatic food additive, exhibits 21.2% efficiency in a tin oxide planar structure. The PSC device shows 88% stability after 30 d at ambient conditions (40–50% relative humidity and room temperature). In addition, nuclear magnetic resonance reveals that TEG groups can chelate lead ions with moderate strength (Kbinding = 2.76), and this strength is considered to be nondestructive to the perovskite lattice to prevent lead leakage. This is the first report to consider lead leakage and provide solutions to reduce this problem.  相似文献   

16.
17.
Organic solar cells (OSCs) containing non‐fullerene acceptors have realized high power conversion efficiency (PCE) up to 14%. However, most of these high‐performance non‐fullerene OSCs have been reported with optimal active layer thickness of about 100 nm, mainly due to the low electron mobility (≈10?4–10?5 cm2 V?1 s?1) of non‐fullerene acceptors, which are not suitable for roll‐to‐roll large‐scale processing. In this work, an efficient non‐fullerene OSC based on poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′′′‐diyl)] (PffBT4T‐2OD):EH‐IDTBR (consists of electron‐rich indaceno[1,2‐b:5,6‐b′]dithiophene as the central unit and an electron‐deficient 5,6‐benzo[c][1,2,5]thiadiazole unit flanked with rhodanine as the peripheral group) with thickness‐independent PCE (maintaining a PCE of 9.1% with an active layer thickness of 300 nm) is presented by optimizing device architectures to overcome the space‐charge effects. Optical modeling reveals that most of the incident light is absorbed near the transparent electrode side in thick‐film devices. The transport distance of electrons with lower mobility will therefore be shortened when using inverted device architecture, in which most of the excitons are generated close to the cathode side and therefore substantially reduces the accumulation of electrons in the device. As a result, an efficient thick‐film non‐fullerene OSC is realized. These results provide important guidelines for the development of more efficient thick‐film non‐fullerene OSCs.  相似文献   

18.
Metal‐oxide‐free methylammonium lead iodide perovskite‐based solar cells are prepared using a dual‐source thermal evaporation method. This method leads to high quality reproducible films with large crystal domain sizes allowing for an in depth study of the effect of perovskite film thickness and the nature of the electron and hole blocking layers on the device performance. The power conversion efficiency increases from 4.7% for a device with only an organic electron blocking layer to almost 15% when an organic hole blocking layer is also employed. In addition to the in depth study on small area cells, larger area cells (approx. 1 cm?2) are prepared and exhibit efficiencies in excess of 10%.  相似文献   

19.
To prevent the interfacial charge recombination between injected holes in the valence band and the redox mediator in the electrolyte in p‐type dye sensitized solar cells (p‐DSSC) the passivation of the recombination sites by organic insulator chenodeoxycholic acid (CDCA) layer is critically investigated in this study. Rather than classical coating of the semiconductor's surface by simultaneous co‐adsorption of CDCA during the dyeing step, two other methods are investigated. The first consists in dissolving CDCA in the electrolyte, while the second consists in spin coating an ethanol solution of CDCA onto the already dyed photocathode. In this study, different sensitizers, electrolytes, and p‐SCs, (NiO, CuGaO2) are explored. Analysis of the current/voltage curves and electrochemical impedance spectroscopy provides evidence that the role of the CDCA layer is to create a physical barrier to prevent the approach of the redox mediator from the NiO surface and consequently raise the open circuit voltage (Voc). The important finding of this study is the demonstration that the Voc in p‐DSSC is heavily limited by interfacial charge recombination and that higher Voc values much above 100 mV and as high as 500 mV can be attained with conventional materials (NiO) if this deleterious side reaction can be suppressed or diminished.  相似文献   

20.
Wearable and portable electronics have brought great convenience. These battery‐powered commercial devices have a limited lifetime and require recharging, which makes more extensive applications challenging. Here, a battery‐like self‐charge universal module (SUM) is developed, which is able to efficiently convert mechanical energy into electrical energy and store it in one device. An integrated SUM consists of a power management unit and an energy harvesting unit. Compared to other mechanical energy harvesting devices, SUM is more ingenious, efficient and can be universally used as a battery. Under low frequency (5 Hz), a SUM can deliver an excellent normalized output power of 2 mW g?1. After carrying several SUMs and jogging for 10 min, a commercial global positioning system module is powered and works continuously for 0.5 h. SUMs can be easily assembled into different packages for powering various commercial electronics, demonstrating the great application prospects of SUM as a sustainable battery‐like device for wearable and portable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号