首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge selective interlayers are of critical importance in order for solar cells based on low mobility materials, such as polymer‐fullerene blends, to perform well. Commonly used anode interlayers consist of high work function transition metal oxides, with molybdenum trioxide (MoO3) being arguably the most used. Here, it is shown that a thin interlayer of MoO3 causes unintentional bulk doping in solar cells based on polymers and polymer‐fullerene blends. The doping concentrations determined from capacitance–voltage measurements are larger than 1016 cm?3 and are seen to increase closer to the anode, reference devices without MoO3 are undoped. Using time of flight secondary ion mass spectroscopy it is furthermore shown that molybdenum is present on the surface of all films with an interfacial layer of MoO3 beneath the active layer. Doping concentrations of this magnitude are detrimental for device performance, especially for active layers >100 nm.  相似文献   

2.
The reduction in electronic recombination losses by the passivation of surfaces is a key factor enabling high‐efficiency solar cells. Here a strategy to passivate surface trap states of TiO2 films used as cathode interlayers in organic photovoltaics (OPVs) through applying alumina (Al2O3) or zirconia (ZrO2) insulating nanolayers by thermal atomic layer deposition (ALD) is investigated. The results suggest that the surface traps in TiO2 are oxygen vacancies, which cause undesirable recombination and high electron extraction barrier, reducing the open‐circuit voltage and the short‐circuit current of the complete OPV device. It is found that the ALD metal oxides enable excellent passivation of the TiO2 surface followed by a downward shift of the conduction band minimum. OPV devices based on different photoactive layers and using the passivated TiO2 electron extraction layers exhibit a significant enhancement of more than 30% in their power conversion efficiencies compared to their reference devices without the insulating metal oxide nanolayers. This is a result of significant suppression of charge recombination and enhanced electron extraction rates at the TiO2/ALD metal oxide/organic interface.  相似文献   

3.
It is demonstrated that a combination of microsecond transient photocurrent measurements and film morphology characterization can be used to identify a charge‐carrier blocking layer within polymer:fullerene bulk‐heterojunction solar cells. Solution‐processed molybdenum oxide (s‐MoOx) interlayers are used to control the morphology of the bulk‐heterojunction. By selecting either a low‐ or high‐temperature annealing (70 °C or 150 °C) for the s‐MoOx layer, a well‐performing device is fabricated with an ideally interconnected, high‐efficiency morphology, or a device is fabricated in which the fullerene phase segregates near the hole extracting contact preventing efficient charge extraction. By probing the photocurrent dynamics of these two contrasting model systems as a function of excitation voltage and light intensity, the optoelectronic responses of the solar cells are correlated with the vertical phase composition of the polymer:fullerene active layer, which is known from dynamic secondary‐ion mass spectroscopy (DSIMS). Numerical simulations are used to verify and understand the experimental results. The result is a method to detect poor morphologies in operating organic solar cells.  相似文献   

4.
It is shown that the performance of inverted organic solar cells can be significantly improved by facilitating the formation of a quasi‐ohmic contact via solution‐processed alkali hydroxide (AOH) interlayers on top of n‐type metal oxide (aluminum zinc oxide, AZO, and zinc oxide, ZnO) layers. AOHs significantly reduce the work function of metal oxides, and are further proven to effectively passivate defect states in these metal oxides. The interfacial energetics of these electron collecting contacts with a prototypical electron acceptor (C60) are investigated to reveal the presence of a large interface dipole and a new interface state between the Fermi energy and the C60 highest occupied molecular orbital for AOH‐modified AZO contacts. These novel interfacial gap states are a result of ground‐state electron transfer from the metal hydroxide‐functionalized AZO contact to the adsorbed molecules, which are hypothesized to be electronically hybridized with the contact. These interface states tail all the way to the Fermi energy, providing for a highly n‐doped (metal‐like) interfacial molecular layer. Furthermore, the strong “light‐soaking” effect is no longer observed in devices with a AOH interface.  相似文献   

5.
The role of the contacts in thin‐film, blended heterojunctions (<100 nm thick) organic photovoltaics is explored, specifically considering concepts of carrier selectivity, injection, and extraction efficiency, relative to recombination. Contact effects are investigated by comparing two hole‐collecting interlayers: a phosphonic acid monolayer on indium tin oxide (ITO) and a nickel oxide thin film. The interlayers have equivalent work functions (≈5.4 eV) but widely variant energy band offsets relative to the lowest unoccupied molecular orbital of the acceptor (electron blocking versus not), which are coupled to large differences in carrier density. Trends in open‐circuit voltages (VOC) as a function of light intensity and temperature are compared and it is concluded that the dominant mechanism limiting VOC for high density of states contacts is free carrier injection, not surface recombination or extraction barriers. Transient photocurrent decay measurements confirm excess reinjected carriers decrease the extraction efficiency via increased recombination and decrease free carrier lifetime, even at high internal electric fields, due to space charge accumulation. These results demonstrate that the energetics and injection dynamics of the interface between interlayers and high carrier density electrodes (typically ITO and metals) must be considered with fabrication and processing of interlayers, in addition to possible carrier selectivity and the interface with the active layer.  相似文献   

6.
Since the highest occupied molecular orbital (HOMO) level of donors in organic solar cells (OSCs) is being constantly downshifted for achieving high open‐circuit voltage (Voc), a further enhancement of the anode work function (WF) is required. Herein, an effective approach of fluorination is demonstrated to simultaneously improve the WF and transparency for anode interlayer (AIL) material. By fluorination, in combination with the dialysis treatment in LiCl solution, the WF of PCP‐2F‐Li could be significantly enhanced from 4.86 to 5.0 eV, as compared to PCP‐Na. Meanwhile, the transparency of the polymer is also improved. As a result, PCP‐2F‐Li can be used to modify efficient active layers consisting of polymer donors with deep HOMO levels, such as PBDB‐T‐2F:IT‐4F, and an outstanding power conversion efficiency (PCE) of 12.7% is achieved in the corresponding device with a high Voc of 0.84 V. This result represents the highest efficiency for the OSCs using a solution‐processed pH‐neutral AIL, which is beneficial to the low‐cost fabrication of high‐performance OSCs with improved stability. More importantly, PCP‐2F‐Li could be processed by blade coating for making large‐area device of 1 cm2, and a PCE of 10.6% is achieved, bringing a promising prospect for the large‐area device fabrication.  相似文献   

7.
We demonstrate solution‐processed tungsten trioxide (WO3) incorporated as hole extraction layer (HEL) in polymer solar cells (PSCs) with active layers comprising either poly(3‐hexylthiophene) (P3HT) or poly[(4,4'‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,50‐diyl] (Si‐PCPDTBT) mixed with a fullerene derivative. The WO3 layers are deposited from an alcohol‐based, surfactant‐free nanoparticle solution. A short, low‐temperature (80 °C) annealing is sufficient to result in fully functional films without the need for an oxygen‐plasma treatment. This allows the application of the WO3 buffer layer in normal as well as inverted architecture solar cells. Normal architecture devices based on WO3 HELs show comparable performance to the PEDOT:PSS reference devices with slightly better fill factors and open circuit voltages. Very high shunt resistances (over 1 MΩ cm2) and excellent diode rectification underline the charge selectivity of the solution‐processed WO3 layers.  相似文献   

8.
Light management holds great promise of realizing high‐performance perovskite solar cells by improving the sunlight absorption with lower recombination current and thus higher power conversion efficiency (PCE). Here, a convenient and scalable light trapping scheme is demonstrated by incorporating bioinspired moth‐eye nanostructures into the metal back electrode via soft imprinting technique to enhance the light harvesting in organic–inorganic lead halide perovskite solar cells. Compared to the flat reference cell with a methylammonium lead halide perovskite (CH3NH3PbI3?x Clx ) absorber, 14.3% of short‐circuit current improvement is achieved for the patterned devices with moth‐eye nanostructures, yielding an increased PCE up to 16.31% without sacrificing the open‐circuit voltage and fill factor. The experimental and theoretical characterizations verify that the cell performance enhancement is mainly ascribed by the broadband polarization‐insensitive light scattering and surface plasmonic effects due to the patterned metal back electrode. It is noteworthy that this light trapping strategy is fully compatible with solution‐processed perovskite solar cells and opens up many opportunities toward the future photovoltaic applications.  相似文献   

9.
Photovoltaic tandem technology has the potential to boost the power conversion efficiency of organic photovoltaic devices. Here, a reliable and efficient fully solution‐processed intermediate layer (IML) consisting of ZnO and neutralized poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is demonstrated for series‐connected multi‐junction organic solar cells (OSCs). Drying at 80 °C in air is sufficient for this solution‐processed IML to obtain excellent functionality and reliability, which allow the use of most of high performance donor materials in the tandem structure. An open circuit voltage (Voc) of 0.56 V is obtained for single‐junction OSCs based on a low band‐gap polymer, while multi‐junction OSCs based on the same absorber material deliver promising fill factor values along with fully additive Voc as the number of junctions increase. Optical and electrical simulations, which are reliable and promising guidelines for the design and investigation of multi‐junction OSCs, are discussed. The outcome of optical and electrical simulations is in excellent agreement with the experimental data, indicating the outstanding efficiency and functionality of this solution‐processed IML. The demonstration of this efficient, solution‐processed IML represents a convenient way for facilitating fabrication of multi‐junction OSCs to achieve high power conversion efficiency.  相似文献   

10.
Sodium‐based energy storage technologies are potential candidates for large‐scale grid applications owing to the earth abundance and low cost of sodium resources. Transition metal phosphides, e.g. MoP, are promising anode materials for sodium‐ion storage, while their detailed reaction mechanisms remain largely unexplored. Herein, the sodium‐ion storage mechanism of hexagonal MoP is systematically investigated through experimental characterizations, density functional theory calculations, and kinetics analysis. Briefly, it is found that the naturally covered surface amorphous molybdenum oxides layers on the MoP grains undergo a faradaic redox reaction during sodiation and desodiation, while the inner crystalline MoP remains unchanged. Remarkably, the MoP anode exhibits a pseudocapacitive‐dominated behavior, enabling the high‐rate sodium storage performance. By coupling the pseudocapacitive anode with a high‐rate‐battery‐type Na3V2O2(PO4)2F@rGO cathode, a novel sodium‐ion full cell delivers a high energy density of 157 Wh kg?1 at 97 W kg?1 and even 52 Wh kg?1 at 9316 W kg?1. These findings present the deep understanding of the sodium‐ion storage mechanism in hexagonal MoP and offer a potential route for the design of high‐rate sodium‐ion storage materials and devices.  相似文献   

11.
A new metal‐oxide‐based interconnecting layer (ICL) structure of all‐solution processed metal oxide/dipole layer/metal oxide for efficient tandem organic solar cell (OSC) is demonstrated. The dipole layer modifies the work function (WF) of molybdenum oxide (MoO x ) to eliminate preexisted counter diode between MoO x and TiO2. Three different amino functionalized water/alcohol soluble conjugated polymers (WSCPs) are studied to show that the WF tuning of MoO x is controllable. Importantly, the results show that S‐shape current density versus voltage (JV) characteristics form when operation temperature decreases. This implies that thermionic emission within the dipole layer plays critical role for helping recombination of electrons and holes. Meanwhile, the insignificant homotandem open‐circuit voltage (V oc) loss dependence on dipole layer thickness shows that the quantum tunneling effect is weak for efficient electron and hole recombination. Based on this ICL, poly(3‐hexylthiophene) (P3HT)‐based homotandem OSC with 1.20 V V oc and 3.29% power conversion efficiency (PCE) is achieved. Furthermore, high efficiency poly(4,8‐bis(5‐(2‐ethylhexyl)‐thiophene‐2‐yl)‐benzo[1,2‐b54,5‐b9]dithiophene‐alt alkylcarbonylthieno[3,4‐b]thiophene) (PBDTTT‐C‐T)‐based homotandem OSC with 1.54 V V oc and 8.11% PCE is achieved, with almost 15.53% enhancement compared to its single cell. This metal oxide/dipole layer/metal oxide ICL provides a new strategy to develop other qualified ICL with different hole transporting layer and electron transporting layer in tandem OSCs.  相似文献   

12.
Organic photovoltaics devices typically utilize illumination through a transparent substrate, such as glass or an optically clear plastic. Utilization of opaque substrates, including low cost foils, papers, and textiles, requires architectures that instead allow illumination through the top of the device. Here, we demonstrate top‐illuminated organic photovoltaics, employing a dry vapor‐printed poly(3,4‐ethylenedioxythiophene) (PEDOT) polymer anode deposited by oxidative chemical vapor deposition (oCVD) on top of a small‐molecule organic heterojunction based on vacuum‐evaporated tetraphenyldibenzoperiflanthene (DBP) and C60 heterojunctions. Application of a molybdenum trioxide (MoO3) buffer layer prior to oCVD deposition increases the device photocurrent nearly 10 times by preventing oxidation of the underlying photoactive DBP electron donor layer during the oCVD PEDOT deposition, and resulting in power conversion efficiencies of up to 2.8% for the top‐illuminated, ITO‐free devices, approximately 75% that of the conventional cell architecture with indium‐tin oxide (ITO) transparent anode (3.7%). Finally, we demonstrate the broad applicability of this architecture by fabricating devices on a variety of opaque surfaces, including common paper products with over 2.0% power conversion efficiency, the highest to date on such fiber‐based substrates.  相似文献   

13.
Partially amorphous La0.6Sr0.4CoO3‐δ (LSC) thin‐film cathodes are fabricated using pulsed laser deposition and are integrated in free‐standing micro‐solid oxide fuel cells (micro‐SOFC) with a 3YSZ electrolyte and a Pt anode. A low degree of crystallinity of the LSC layers is achieved by taking advantage of the miniaturization of the cells, which permits low‐temperature operation (300–450 °C). Thermomechanically stable micro‐SOFC are obtained with strongly buckled electrolyte membranes. The nanoporous columnar microstructure of the LSC layers provides a large surface area for oxygen incorporation and is also believed to reduce the amount of stress at the cathode/electrolyte interface. With a high rate of failure‐free micro‐SOFC membranes, it is possible to avoid gas cross‐over and open‐circuit voltages of 1.06 V are attained. First power densities as high as 200–262 mW cm?2 at 400–450 °C are achieved. The area‐specific resistance of the oxygen reduction reaction is lower than 0.3 Ω cm2 at 400 °C around the peak power density. These outstanding findings demonstrate that partially amorphous oxides are promising electrode candidates for the next‐generation of solid oxide fuel cells working at low‐temperatures.  相似文献   

14.
A low‐temperature solution‐processed strategy is critical for cost‐effective manufacture of flexible perovskite solar cells (PSCs). Based on an aqueous‐processed TiO2 layer, and conventional fullerene derivatives replaced by a pristine fullerene interlayer of C60, herein a facile interface engineering for making all‐solution‐processed TiO2/C60 layers in flexible n‐i‐p PSCs is reported. Due to the improvement of the perovskite grain quality, promotion of interfacial charge transfer and suppression of interfacial charge recombination, the stabilized power conversion efficiency for the flexible PSCs reaches as high as 16% with high bending resistance retention (≈80% after 1500 cycles) and high light‐soaking retention (≈100% after 100 min). In addition, the stabilized efficiency is over 19% for the rigid TiO2/C60‐based PSCs. The present work with the facile low‐temperature solution process renders the practicability for high‐performance flexible PSCs applied to wearable devices, portable equipment, and electric vehicles.  相似文献   

15.
Solution‐processable organic semiconductor nanowires (NWs) offer a potentially powerful strategy for producing large‐area printed flexible devices. Here, the fabrication of lateral organic solar cells (LOSC) using solution‐processed organic NW blends on a flexible substrate to produce a power source for use in flexible integrated microelectronics is reported. A high photocarrier generation and an efficient charge sweep out are achieved by incorporating 1D self‐assembled poly(3‐hexylthiophene) NWs into the active layer, and an MoO3 interfacial layer with high work function is introduced to increase the built‐in potential. These structures significantly increase the carrier diffusion/drift length and overall generated photocurrent in the channel. The utility of the LOSCs for high power source applications is demonstrated by using interdigitated electrode patterns that consist of multiple devices connected in parallel or in series. High photovoltage‐producing LOSC modules on plastic substrates for use in flexible optoelectronic devices are successfully fabricated. The LOSCs described here offer a new device architecture for use in highly flexible photoresponsive energy devices.  相似文献   

16.
Mechanically bendable and flexible functionalities are urgently required for next‐generation battery systems that will be included in soft and wearable electronics, active sportswear, and origami‐based deployable space structures. However, it is very difficult to synthesize anode and cathode electrodes that have high energy density and structural reliability under large bending deformation. Here, vanadium oxide (V2O5) and nickel cobalt oxide (NiCo2O4) nanowire‐carbon fabric electrodes for highly flexible and bendable lithium ion batteries are reported. The vanadium oxide and nickel cobalt oxide nanowires were directly grown on plasma‐treated carbon fabric and were used as cathode and anode electrodes in a full cell lithium ion battery. Most importantly, a pre‐lithiation process was added to the nickel cobalt oxide nanowire anode to facilitate the construction of a full cell using symmetrically‐architectured nanowire‐carbon fabric electrodes. The highly bendable full cell based on poly(ethylene oxide) polymer electrolyte and room temperature ionic liquid shows high energy density of 364.2 Wh kg?1 at power density of 240 W kg?1, without significant performance degradation even under large bending deformations. These results show that vanadium oxide and lithiated nickel cobalt oxide nanowire‐carbon fabrics are a good combination for binder‐free electrodes in highly flexible lithium‐ion batteries.  相似文献   

17.
Solution‐processed zinc oxide nanocrystals (ZnO NCs) hybridized with insulating poly(ethylene glycol) (PEG) are introduced as a cathode interlayer in bulk heterojunction organic photovoltaic cells based on poly(3‐hexylthiophene) (P3HT):(6,6)‐phenyl‐C61 butyric acid methyl ester (PC61BM) blends. The performance of devices with ZnO‐PEG interlayers exhibit an excellent maximum power conversion efficiency (PCE) of 4.4% with a fill factor (FF) of 0.69 under optimized conditions. This enhanced device performance is attributed to decreased series resistance from the hole blocking properties of ZnO, as well as the facilitated electron transport due to the reduced area of ZnO domain boundaries upon addition of PEG. The addition of PEG also lowers the electron affinity of ZnO, which leads to a nearly Ohmic contact at the polymer/metal interface. Moreover, the ZnO‐PEG interlayer serves as an optical spacer that enhances light absorption and thereby increases the photocurrent. The addition of PEG permits control over layer thickness and refractive indices. Improved photon energy absorption is supported by optical simulations. Devices with highly stable metals such as Ag and Au also show dramatically enhanced performance comparable to conventional devices with Al cathode. Due to its simplicity and excellent characteristics, this multifunctional interlayer is suitable for high performance printed photovoltaic cells.  相似文献   

18.
A new strategy for improving the charge extraction in thick bulk heterojunction (BHJ) polymer solar cells (PSCs) is reported. By the deposition of a solution‐processed vanadium oxide (s‐VOx) onto BHJ active layers, conductive charge‐transport channels are formed inside the active layer via a charge‐transfer doping reaction between the lone‐pair electrons of the sulfur atoms in the polymer and the Lewis‐acidic vanadium atoms of the s‐VOx. Because the charge‐transport channels significantly reduce charge recombination in the BHJ films, high internal quantum efficiencies (IQEs) of over 80% are achieved in the thick inverted PSCs (≈420 nm). This finding represents a new strategy for improving the efficiency and feasibility of printable photovoltaic devices.  相似文献   

19.
Periodically patterned zinc oxide nanorod (P‐ZnO NR) layers are directly prepared from a pre‐patterned ZnO seed layer using a polydimethylsiloxane (PDMS) elastomeric stamp and then applied in inverted organic photovoltaic devices (IOPVs). The IOPV is assembled with a hydrothermally grown zinc oxide nanorod patterns with a (100) preferential crystal orientation as an electron transport buffer layer (ETBL) and photoactive bilayer consisting of methacylate end‐functionalized poly(3‐hexylthiophene) (P3HT‐MA), phenyl‐C60‐butyric acid methyl ester (PC60BM) and indene‐C60 bis‐adduct (IC60BA). In te IOPVs, the P‐ZnO NR is found to induce efficient light harvesting and the photocrosslinkable P3HTs afford solution‐processed bilayer architecture in IOPVs to show improved device stability and performance (PCEmax= 5.95%), as the bilayered structure allowed direct exciton splitting, thus reducing the charge recombination.  相似文献   

20.
A hybrid nanoarchitecture aerogel composed of WS2 nanosheets and carbon nanotube‐reduced graphene oxide (CNT‐rGO) with ordered microchannel three‐dimensional (3D) scaffold structure was synthesized by a simple solvothermal method followed by freeze‐drying and post annealing process. The 3D ordered microchannel structures not only provide good electronic transportation routes, but also provide excellent ionic conductive channels, leading to an enhanced electrochemical performance as anode materials both for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Significantly, WS2/CNT‐rGO aerogel nanostructure can deliver a specific capacity of 749 mA h g?1 at 100 mA g?1 and a high first‐cycle coulombic efficiency of 53.4% as the anode material of LIBs. In addition, it also can deliver a capacity of 311.4 mA h g?1 at 100 mA g?1, and retain a capacity of 252.9 mA h g?1 at 200 mA g?1 after 100 cycles as the anode electrode of SIBs. The excellent electrochemical performance is attributed to the synergistic effect between the WS2 nanosheets and CNT‐rGO scaffold network and rational design of 3D ordered structure. These results demonstrate the potential applications of ordered CNT‐rGO aerogel platform to support transition‐metal‐dichalcogenides (i.e., WS2) for energy storage devices and open up a route for material design for future generation energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号