首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

2.
Li‐rich layered metal oxides have attracted much attention for their high energy density but still endure severe capacity fading and voltage decay during cycling, especially at elevated temperature. Here, facile surface treatment of Li1.17Ni0.17Co0.17Mn0.5O2 (0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2) spherical cathode material is designed to address these drawbacks by hybrid surface protection layers composed of Mg2+ pillar and Li‐Mg‐PO4 layer. As a result, the surface coated Li‐rich cathode material exhibits much enhanced cycling stability at 60 °C, maintaining 72.6% capacity retention (180 mAh g?1) between 3.0 and 4.7 V after 250 cycles. More importantly, 88.7% average discharge voltage retention can be obtained after the rigorous cycle test. The strategy developed here with novel hydrid surface protection effect can provide a vital approach to inhibit the undesired side reactions and structural deterioration of Li‐rich cathode materials and may also be useful for other layered oxides to increase their cycling stability at elevated temperature.  相似文献   

3.
Research activities related to the development of negative electrodes for construction of high‐performance Li‐ion batteries (LIBs) with conventional cathodes such as LiCoO2, LiFePO4, and LiMn2O4 are described. The anode materials are classified in to three main categories, insertion, conversion, and alloying type, based on their reactivity with Li. Although numerous materials have been proposed (i.e., for half‐cell assembly), few of them have reached commercial applications, apart from graphite, Li4Ti5O12, Si, and Sn‐Co‐C. This clearly demonstrates that full‐cell studies are desperately needed rather than just characterizing materials in half‐cell assemblies. Additionally, the performance of such anodes in practical Li‐ion configurations (full‐cell) is much more important than merely proposing materials for LIBs. Irreversible capacity loss, huge volume variation, unstable solid electrolyte interface layer formation, and poor cycleability are the main issues for conversion and alloy type anodes. This review addresses how best to circumvent the mentioned issues during the construction of Li‐ion cells and the future prospects of such anodes are described in detail.  相似文献   

4.
Li and Mn‐rich layered oxides, xLi2MnO3·(1–x)LiMO2 (M=Ni, Mn, Co), are promising cathode materials for Li‐ion batteries because of their high specific capacity that can exceed 250 mA h g?1. However, these materials suffer from high 1st cycle irreversible capacity, gradual capacity fading, low rate capability, a substantial charge‐discharge voltage hysteresis, and a large average discharge voltage decay during cycling. The latter detrimental phenomenon is ascribed to irreversible structural transformations upon cycling of these cathodes related to potentials ≥4.5 V required for their charging. Transition metal inactivation along with impedance increase and partial layered‐to‐spinel transformation during cycling are possible reasons for the detrimental voltage fade. Doping of Li, Mn‐rich materials by Na, Mg, Al, Fe, Co, Ru, etc. is useful for stabilizing capacity and mitigating the discharge‐voltage decay of xLi2MnO3·(1–x)LiMO2 electrodes. Surface modifications by thin coatings of Al2O3, V2O5, AlF3, AlPO4, etc. or by gas treatment (for instance, by NH3) can also enhance voltage and capacity stability during cycling. This paper describes the recent literature results and ongoing efforts from our groups to improve the performance of Li, Mn‐rich materials. Focus is also on preparation of cobalt‐free cathodes, which are integrated layered‐spinel materials with high reversible capacity and stable performance.  相似文献   

5.
Li and Mn‐rich layered cathodes, despite their high specific capacity, suffer from capacity fading and discharge voltage decay upon cycling. Both specific capacity and discharge voltage of Li and Mn‐rich cathodes are stabilized upon cycling by optimized Al doping. Doping Li and Mn‐rich cathode materials Li1.2Ni0.16Mn0.56Co0.08O2 by Al on the account of manganese (as reflected by their stoichiometry) results in a decrease in their specific capacity but increases pronouncedly their stability upon cycling. Li1.2Ni0.16Mn0.51Al0.05Co0.08O2 exhibits 96% capacity retention as compared to 68% capacity retention for Li1.2Ni0.16Mn0.56Co0.08O2 after 100 cycles. This doping also reduces the decrease in the average discharge voltage upon cycling, which is the longstanding fatal drawback of these Li and Mn‐rich cathode materials. The electrochemical impedance study indicates that doping by Al has a surface stabilization effect on these cathode materials. The structural analysis of cycled electrodes by Raman spectroscopy suggests that Al doping also has a bulk stabilizing effect on the layered LiMO2 phase resulting in the better electrochemical performance of Al doped cathode materials as compared to the undoped counterpart. Results from a prolonged systematic work on these cathode materials are presented and the best results that have ever been obtained are reported.  相似文献   

6.
Li metal anodes are going through a great revival but they still encounter grand challenges. One often neglected issue is that most reported Li metal anodes are only cyclable under relatively low current density (<5 mA cm?2) and small areal capacity (<5 mAh cm?2), which essentially limits their high‐power applications and results in ineffective Li utilization (<1%). Herein, it is reported that surface alloyed Li metal anodes can enable reversible cycling with ultrafast rate and ultralarge areal capacity. Low‐cost Si wafers are used and are chemically etched down to 20–30 µm membranes. Simply laminating a Si membrane onto Li foil results in the formation of LixSi alloy film fused onto Li metal with mechanical robustness and high Li‐ion conductivity. Symmetric cell measurements show that the surface alloyed Li anode has excellent cycling stability, even under high current density up to 25 mA cm?2 and unprecedented areal capacity up to 100 mAh cm?2. Furthermore, the surface alloyed Li anode is paired with amorphous MoS3 cathode and achieves remarkable full‐cell performance.  相似文献   

7.
Although the “water‐in‐salt” electrolyte has significantly expanded the electrochemical stability window of aqueous electrolytes from 1.23 to 3 V, its inevitable hydrogen evolution under 1.9 V versus Li+/Li prevents the practical use of many energy‐dense anodes. Meanwhile, its liquidus temperature at 17 °C restricts its application below ambient temperatures. An advanced hybrid electrolyte is proposed in this work by introducing acetonitrile (AN) as co‐solvent, which minimizes the presence of interfacial water at the negatively charged electrode surface, and generates a thin and uniform interphase consisting of an organic outer layer based on nitrile (C?N) and sulfamide (R‐S‐N‐S) species and an inner layer rich in LiF. Such an interphase significantly suppresses water reduction and expands the electrochemical stability window to an unprecedented width of 4.5 V. Thanks to the low freezing point (?48 °C) and low viscosity of AN, the hybrid electrolyte is highly conductive in a wide temperature range, and enables a LiMn2O4/Li4Ti5O12 full cell at both ambient and sub‐ambient temperatures with excellent cycling stability and rate capability. Meanwhile, such a hybrid electrolyte also inherits the nonflammable nature of aqueous electrolyte. The well‐balanced merits of the developed electrolyte make it suitable for high energy density aqueous batteries.  相似文献   

8.
Lithium (Li) metal anodes are promising candidates for high‐energy‐density batteries. However, uncontrollable dendritic plating behavior and infinite volume expansion are hindering their practical applications. Herein, a novel CuO@Ti‐mesh (CTM) is prepared by microwave‐assisted reactions, followed by pressing on Li wafers, leading to Li/CuO@Ti‐mesh (LCTM) composite anodes. The lithiophilic CuO nanoflowers on Ti‐mesh provides evenly distributed nucleation sites, inducing uniform Li‐ion lateral plating, which can effectively inhibit the growth of Li dendrites and volume expansion during cycling. The as‐prepared LCTM composite anode exhibits high Coulombic efficiency (CE) of 94.2% at 10 mA cm‐2 over 90 cycles. Meanwhile, the LCTM anode shows a low overpotential of 50 mV at 10 mA cm‐2 over 16 000 cycles and a low overpotential of 90 and 250 mV even at ultrahigh current densities of 20 and 40 mA cm‐2. When paired with Li4Ti5O12 (LTO), it enhances the capacity retention of LTO/Li wafer full cells by about two times from 36.6% to 73.0% and 42.0% to 80.0% at 5C and 10C with long‐term cycling. It is hoped that this LCTM anode with ultrahigh rates and ultralong cycle life may put Li‐metal anode forward to practical applications, such as in Li–S, Li‐air batteries, etc.  相似文献   

9.
The Li‐rich cathode materials have been considered as one of the most promising cathodes for high energy Li‐ion batteries. However, realization of these materials for use in Li‐ion batteries is currently limited by their intrinsic problems. To overcome this barrier, a new surface treatment concept is proposed in which a hybrid surface layer composed of a reduced graphene oxide (rGO) coating and a chemically activated layer is created. A few layers of GO are first coated on the surface of the Li‐rich cathode material, followed by a hydrazine treatment to produce the reducing agent of GO and the chemical activator of the Li2MnO3 phase. Compared to previous studies, this surface treatment provides substantially improved electrochemical performance in terms of initial Coulombic effiency and retention of discharge voltage. As a result, the surface‐treated 0.4Li­2MnO3–0.6LiNi1/3Co1/3Mn1/3O2 exhibits a high capacity efficiency of 99.5% during the first cycle a the discharge capacity of 250 mAh g?1 (2.0–4.6 V under 0.1C), 94.6% discharge voltage retention during 100 cycles (1C) and the superior capacity retention of 60% at 12C at 24 °C.  相似文献   

10.
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin.  相似文献   

11.
Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm?2 and stable electrodeposition capabilities of 4 mAh cm?2 at an ultrahigh current density of 4 mA cm?2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes.  相似文献   

12.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

13.
The introduction of 3D wettable current collectors is one of the practical strategies toward realizing high reversibility of lithium (Li) metal anodes, yet its effect is usually insufficient owing to single electron‐conductive skeleton. Here, homogeneous Li deposition behavior and enhanced Coulombic efficiency is reported for electrochemically lithiated Cu3P nanowires, owing to the formation of a mixed ion/electron‐conducting skeleton (MIECS). In particular, by evaluating the Gibbs free energy change, the possible chemical reaction between Cu3P and molten Li is used to construct a MIECS containing Li3P and Cu–Li alloy phase. The successful conversion of Cu3P nanowires to Li3P and Cu–Li alloy nanocomposite not only greatly reduces the surface energy between molten Li and Cu3P, but also induces uniform Li stripping/plating behavior via balanced ion/electron transport. Thus, the as‐obtained Li@MIECS composite anode displays superior cycling stability in both symmetric cells and full cells. This work provides a promising option for the preparation of high‐performance composite Li anodes containing MIECS by thermally pre‐storing Li.  相似文献   

14.
The formation of a solid‐electrolyte interphase on the anode surface of an Li‐ion battery using an organic liquid electrolyte robs Li+ irreversibly form the cathode on the initial charge if the cells are fabricated in the discharged state. In order to increase the cathode capacity, the use of Li3N as a sacrificial source of Li+ on the initial charge has been evaluated chemically and electrochemically as an additive to an LiCoO2 cathode. Li3N is shown to be chemically stable in a dry atmosphere as small particles with fresh surfaces and can increase the reversible capacities of a full cell without compromising the rate capability of the cells.  相似文献   

15.
Lithium‐sulfur (Li‐S) batteries are being considered as the next‐generation high‐energy‐storage system due to their high theoretical energy density. However, the use of a lithium‐metal anode poses serious safety concerns due to lithium dendrite formation, which causes short‐circuiting, and possible explosions of the cell. One feasible way to address this issue is to pair a fully lithiated lithium sulfide (Li2S) cathode with lithium metal‐free anodes. However, bulk Li2S particles face the challenges of having a large activation barrier during the initial charge, low active‐material utilization, poor electrical conductivity, and fast capacity fade, preventing their practical utility. Here, the development of a self‐supported, high capacity, long‐life cathode material is presented for Li‐S batteries by coating Li2S onto doped graphene aerogels via a simple liquid infiltration–evaporation coating method. The resultant cathodes are able to lower the initial charge voltage barrier and attain a high specific capacity, good rate capability, and excellent cycling stability. The improved performance can be attributed to the (i) cross‐linked, porous graphene network enabling fast electron/ion transfer, (ii) coated Li2S on graphene with high utilization and a reduced energy barrier, and (iii) doped heteroatoms with a strong binding affinity toward Li2S/lithium polysulfides with reduced polysulfide dissolution based on first‐principles calculations.  相似文献   

16.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   

17.
The Li–O2 battery (LOB) represents a promising candidate for future electric vehicles owing to its outstanding energy density. However, the practical application of LOB cells is largely blocked by the poor cycling performance of cathode materials. Herein, an ultralong 440‐cycle life of an LOB cell is achieved using CeO2 nanocubes super‐assembled on an inverse opal carbon matrix as the cathode material without any additives. CeO2 is proved to be effective for the complete and sensitive decomposition of loosely stacked Li2O2 films during the oxygen evolution reaction process and full accommodation of volume changes caused by the fast growth of Li2O2 films during the oxygen reduction reaction process. The super‐assembled porous CeO2/C frameworks satisfy critical requirements including controlled size, morphology, high Ce3+/Ce4+ ratio, and efficient volume change accommodation, which dramatically increase the cycle life of LOB cell to 440 cycles. This study reveals the design strategy for high performance CeO2 catalyst cathodes for LOB cells and the generation mechanisms of Li2O2 films during the discharge process by using density functional theory calculations, showing new avenues for improving the future smart design of CeO2‐based cathode catalysts for Li–O2 batteries.  相似文献   

18.
Structural changes in Li2MnO3 cathode material for rechargeable Li‐ion batteries are investigated during the first and 33rd cycles. It is found that both the participation of oxygen anions in redox processes and Li+‐H+ exchange play an important role in the electrochemistry of Li2MnO3. During activation, oxygen removal from the material along with Li gives rise to the formation of a layered MnO2‐type structure, while the presence of protons in the interslab region, as a result of electrolyte oxidation and Li+‐H+ exchange, alters the stacking sequence of oxygen layers. Li re‐insertion by exchanging already present protons reverts the stacking sequence of oxygen layers. The re‐lithiated structure closely resembles the parent Li2MnO3, except that it contains less Li and O. Mn4+ ions remain electrochemically inactive at all times. Irreversible oxygen release occurs only during activation of the material in the first cycle. During subsequent cycles, electrochemical processes seem to involve unusual redox processes of oxygen anions of active material along with the repetitive, irreversible oxidation of electrolyte species. The deteriorating electrochemical performance of Li2MnO3 upon cycling is attributed to the structural degradation caused by repetitive shearing of oxygen layers.  相似文献   

19.
Li2MnO3 is a critical component in the family of “Li‐excess” materials, which are attracting attention as advanced cathode materials for Li‐ion batteries. Here, first‐principle calculations are presented to investigate the electrochemical activity and structural stability of stoichiometric LixMnO3 (0 ≤ x ≤ 2) as a function of Li content. The Li2MnO3 structure is electrochemically activated above 4.5 V on delithiation and charge neutrality in the bulk of the material is mainly maintained by the oxidization of a portion of the oxygen ions from O2? to O1?. While oxygen vacancy formation is found to be thermodynamically favorable for x < 1, the activation barriers for O2? and O1? migration remain high throughout the Li com­position range, impeding oxygen release from the bulk of the compound. Defect layered structures become thermodynamically favorable at lower Li content (x < 1), indicating a tendency towards the spinel‐like structure transformation. A critical phase transformation path for forming nuclei of spinel‐like domains within the matrix of the original layered structure is proposed. Formation of defect layered structures during the first charge is shown to manifest in a depression of the voltage profile on the first discharge, providing one possible explanation for the observed voltage fade of the Li‐excess materials.  相似文献   

20.
Aqueous lithium/sodium‐ion batteries (AIBs) have received increasing attention because of their intrinsic safety. However, the narrow electrochemical stability window (1.23 V) of the aqueous electrolyte significantly hinders the development of AIBs, especially the choice of electrode materials. Here, an aqueous electrolyte composed of LiClO4, urea, and H2O, which allows the electrochemical stability window to be expanded to 3.0 V, is developed. Novel [Li (H2O)x(organic)y]+ primary solvation sheath structures are developed in this aqueous electrolyte, which contribute to the formation of solid–electrolyte interface layers on the surfaces of both the cathode and anode. The expanded electrochemical stability window enables the construction of full aqueous Li‐ion batteries with LiMn2O4 cathodes and Mo6S8 anodes, demonstrating an operating voltage of 2.1 V and stability over 2000 cycles. Furthermore, a symmetric aqueous Na‐ion battery using Na3V2(PO4)3 as both the cathode and anode exhibits operating voltage of 1.7 V and stability over 1000 cycles at a rate of 5 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号