首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, a novel electrospun single‐ion conducting polymer electrolyte (SIPE) composed of nanoscale mixed poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) and lithium poly(4,4′‐diaminodiphenylsulfone, bis(4‐carbonyl benzene sulfonyl)imide) (LiPSI) is reported, which simultaneously overcomes the drawbacks of the polyolefin‐based separator (low porosity and poor electrolyte wettability and thermal dimensional stability) and the LiPF6 salt (poor thermal stability and moisture sensitivity). The electrospun nanofiber membrane (es‐PVPSI) has high porosity and appropriate mechanical strength. The fully aromatic polyamide backbone enables high thermal dimensional stability of es‐PVPSI membrane even at 300 °C, while the high polarity and high porosity ensures fast electrolyte wetting. Impregnation of the membrane with the ethylene carbonate (EC)/dimethyl carbonate (DMC) (v:v = 1:1) solvent mixture yields a SIPE offering wide electrochemical stability, good ionic conductivity, and high lithium‐ion transference number. Based on the above‐mentioned merits, Li/LiFePO4 cells using such a SIPE exhibit excellent rate capacity and outstanding electrochemical stability for 1000 cycles at least, indicating that such an electrolyte can replace the conventional liquid electrolyte–polyolefin combination in lithium ion batteries (LIBs). In addition, the long‐term stripping–plating cycling test coupled with scanning electron microscope (SEM) images of lithium foil clearly confirms that the es‐PVPSI membrane is capable of suppressing lithium dendrite growth, which is fundamental for its use in high‐energy Li metal batteries.  相似文献   

2.
A composite membrane based on electrospun poly(vinylidene fluoride) (PVDF) and lithium polyvinyl alcohol oxalate borate (LiPVAOB) exhibiting high safety (self‐extinguishing) and good mechanical property is prepared. The ionic conductivity of the as‐prepared gel polymer electrolyte from this composite membrane saturated with 1 mol L?1 LiPF6 electrolyte at ambient temperature can be up to 0.26 mS cm?1, higher than that of the corresponding well‐used commercial separator (Celgard 2730), 0.21 mS cm?1. Moreover, the lithium ion transference in the gel polymer electrolyte at room temperature is 0.58, twice as that in the commercial separator (0.27). Furthermore, the absorbed electrolyte solvent is difficult to evaporate at elevated temperature. Its electrochemical performance is evaluated by using LiFePO4 cathode. The obtained results suggest that this gel‐type composite membrane shows great possibilities for use in large‐capacity lithium ion batteries that require high safety.  相似文献   

3.
Lithium (Li) metal is a key anode material for constructing next generation high energy density batteries. However, dendritic Li deposition and unstable solid electrolyte interphase (SEI) layers still prevent practical application of Li metal anodes. In this work, it is demonstrated that an uniform Li coating can be achieved in a lithium fluoride (LiF) decorated layered structure of stacked graphene (SG), leading to the formation of an SEI‐functionalized membrane that retards electron transfer by three orders of magnitude to avoid undesirable Li deposition on the top surface, and ameliorates Li+ ion migration to enable uniform and dendrite‐free Li deposition beneath such an interlayer. Surface chemistry analysis and density functional theory calculations demonstrate that these beneficial features arise from the formation of C–Fx surface components on the SG sheets during the Li coating process. Based on such an SEI‐functionalized membrane, stable cycling at high current densities up to 3 mA cm?2 and Li plating capacities up to 4 mAh cm?2 can be realized in LiPF6/carbonate electrolytes. This work elucidates the promising strategy of modifying Li plating behavior through the SEI‐functionalized carbon structure, with significantly improved cycling stability of rechargeable Li metal anodes.  相似文献   

4.
The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g?1 (846 W h kg?1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g?1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.  相似文献   

5.
In situ measurements of the growth of solid electrolyte interphase (SEI) layer on silicon and the lithiation‐induced volume changes in silicon in lithium ion half‐cells are reported. Thin film amorphous silicon electrodes are fabricated in a configuration that allows unambiguous separation of the total thickness change into contribution from SEI thickness and silicon volume change. Electrodes are assembled into a custom‐designed electrochemical cell, which is integrated with an atomic force microscope. The electrodes are subjected to constant potential lithiation/delithiation at a sequence of potential values and the thickness measurements are made at each potential after equilibrium is reached. Experiments are carried out with two electrolytes—1.2 m lithium hexafluoro‐phosphate (LiPF6) in ethylene carbonate (EC) and 1.2 m LiPF6 in propylene carbonate (PC)—to investigate the influence of electrolyte composition on SEI evolution. It is observed that SEI formation occurs predominantly during the first lithiation and the maximum SEI thickness is ≈17 and 10 nm respectively for EC and PC electrolytes. This study also presents the measured Si expansion ratio versus equilibrium potential and charge capacity versus equilibrium potential; both relationships display hysteresis, which is explained in terms of the stress–potential coupling in silicon.  相似文献   

6.
Use of a protective coating on a lithium metal anode (LMA) is an effective approach to enhance its coulombic efficiency and cycling stability. Here, a facile approach to produce uniform silver nanoparticle‐decorated LMA for high‐performance Li metal batteries (LMBs) is reported. This effective treatment can lead to well‐controlled nucleation and the formation of a stable solid electrolyte interphase (SEI). Ag nanoparticles embedded in the surface of Li anodes induce uniform Li plating/stripping morphologies with reduced overpotential. More importantly, cross‐linked lithium fluoride‐rich interphase formed during Ag+ reduction enables a highly stable SEI layer. Based on the Ag‐LiF decorated anodes, LMBs with LiNi1/3Mn1/3Co1/3O2 cathode (≈1.8 mAh cm?2) can retain >80% capacity over 500 cycles. The similar approach can also be used to treat sodium metal anodes. Excellent stability (80% capacity retention in 10 000 cycles) is obtained for a Na||Na3V2(PO4)3 full cell using a Na‐Ag‐NaF/Na anode cycled in carbonate electrolyte. These results clearly indicate that synergetic control of the nucleation and SEI is an efficient approach to stabilize rechargeable metal batteries.  相似文献   

7.
Lithium metal anodes are expected to drive practical applications that require high energy‐density storage. However, the direct use of metallic lithium causes safety concerns, low rate capabilities, and poor cycling performance due to unstable solid electrolyte interphase (SEI) and undesired lithium dendrite growth. To address these issues, a radio frequency sputtered graphite‐SiO2 ultrathin bilayer on a Li metal chips is demonstrated, for the first time, as an effective SEI layer. This leads to a dendrite free uniform Li deposition to achieve a stable voltage profile and outstanding long hours plating/stripping compared to the bare Li. Compared to a bare Li anode, the graphite‐SiO2 bilayer modified Li anode coupled with lithium nickel cobalt manganese oxide cathode (NMC111) and lithium titanate shows improved capacity retention, higher capacity at higher rates, longer cycling stability, and lower voltage hysteresis. Graphite acts as an electrical bridge between the plated Li and Li electrode, which lowers the impedance and buffers the volume expansion during Li plating/stripping. Adding an ultrathin SiO2 layer facilitates Li‐ion diffusion and lithiation/delithiation, provides higher electrolyte affinity, higher chemical stability, and higher Young's modulus to suppress the Li dendrite growth.  相似文献   

8.
High energy batteries urgently required to power electric vehicles are restricted by a number of challenges, one of which is the sluggish kinetics of cell reactions under low temperatures. A novel approach is reported to improve the low temperature performance of high energy batteries through rational construction of low impedance anode and cathode interface films. Such films are simultaneously formed on both electrodes via the reduction and oxidation of a salt, lithium difluorobis(oxalato) phosphate. The formation mechanisms of these interface films and their contributions to the improved low temperature performances of high energy batteries are demonstrated using various physical and electrochemical techniques on a graphite/LiNi0.5Co0.2Mn0.3O2 battery using 1 m LiPF6‐ethylene carbonate/ethyl methyl carbonate (1/2, in weight) baseline electrolyte. It is found that the interface impedances, especially the one on the anode, constitute the main obstacle to capacity delivery of high energy batteries at low temperatures, while the salt containing fluorine and oxalate substructures used as additives can effectively suppress them.  相似文献   

9.
The safety hazards and low Coulombic efficiency originating from the growth of lithium dendrites and decomposition of the electrolyte restrict the practical application of Li metal batteries (LMBs). Inspired by the low cost of low concentration electrolytes (LCEs) in industrial applications, dual‐salt LCEs employing 0.1 m Li difluorophosphate (LiDFP) and 0.4 m LiBOB/LiFSI/LiTFSI are proposed to construct a robust and conductive interphase on a Li metal anode. Compared with the conventional electrolyte using 1 m LiPF6, the ionic conductivity of LCEs is reduced but the conductivity decrement of the separator immersed in LCEs is moderate, especially for the LiDFP–LiFSI and LiDFP–LiTFSI electrolytes. The accurate Coulombic efficiency (CE) of the Li||Cu cells increases from 83.3% (electrolyte using 1 m LiPF6) to 97.6%, 94.5%, and 93.6% for LiDFP–LiBOB, LiDFP–LiFSI, and LiDFP–LiTFSI electrolytes, respectively. The capacity retention of Li||LiFePO4 cells using the LiDFP–LiBOB electrolyte reaches 95.4% along with a CE over 99.8% after 300 cycles at a current density of 2.0 mA cm?2 and the capacity reaches 103.7 mAh g?1 at a current density of up to 16.0 mA cm?2. This work provides a dual‐salt LCE for practical LMBs and presents a new perspective for the design of electrolytes for LMBs.  相似文献   

10.
Lithium‐rich layered oxides (LRLOs) exhibit specific capacities above 250 mAh g?1, i.e., higher than any of the commercially employed lithium‐ion‐positive electrode materials. Such high capacities result in high specific energies, meeting the tough requirements for electric vehicle applications. However, LRLOs generally suffer from severe capacity and voltage fading, originating from undesired structural transformations during cycling. Herein, the eco‐friendly, cobalt‐free Li1.2Ni0.2Mn0.6O2 (LRNM), offering a specific energy above 800 Wh kg?1 at 0.1 C, is investigated in combination with a lithium metal anode and a room temperature ionic liquid‐based electrolyte, i.e., lithium bis(trifluoromethanesulfonyl)imide and N‐butyl‐N‐methylpyrrolidinium bis(fluorosulfonyl)imide. As evidenced by electrochemical performance and high‐resolution transmission electron microscopy, X‐ray photoelectron spectroscopy, and online differential electrochemical mass spectrometry characterization, this electrolyte is capable of suppressing the structural transformation of the positive electrode material, resulting in enhanced cycling stability compared to conventional carbonate‐based electrolytes. Practically, the capacity and voltage fading are significantly limited to only 19% and 3% (i.e., lower than 0.2 mV per cycle), respectively, after 500 cycles. Finally, the beneficial effect of the ionic liquid‐based electrolyte is validated in lithium‐ion cells employing LRNM and Li4Ti5O12. These cells achieve a promising capacity retention of 80% after 500 cycles at 1 C.  相似文献   

11.
Ni‐rich cathodes are considered feasible candidates for high‐energy‐density Li‐ion batteries (LIBs). However, the structural degradation of Ni‐rich cathodes on the micro‐ and nanoscale leads to severe capacity fading, thereby impeding their practical use in LIBs. Here, it is reported that 3‐(trimethylsilyl)‐2‐oxazolidinone (TMS‐ON) as a multifunctional additive promotes the dissociation of LiPF6, prevents the hydrolysis of ion‐paired LiPF6 (which produces undesired acidic compounds including HF), and scavenges HF in the electrolyte. Further, the presence of 0.5 wt% TMS‐ON helps maintain a stable solid–electrolyte interphase (SEI) at Ni‐rich LiNi0.7Co0.15Mn0.15O2 (NCM) cathodes, thus mitigating the irreversible phase transformation from layered to rock‐salt structures and enabling the long‐term stability of the SEI at the graphite anode with low interfacial resistance. Notably, NCM/graphite full cells with TMS‐ON, which exhibit an excellent discharge capacity retention of 80.4%, deliver a discharge capacity of 154.7 mAh g?1 after 400 cycles at 45 °C.  相似文献   

12.
Fluorine‐based additives have a tremendously beneficial effect on the performance of lithium‐ion batteries, yet the origin of this phenomenon is unclear. This paper shows that the formation of a solid‐electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open‐circuit potential (OCP). This study shows an anode‐specific model system, the reduction of 1,2‐diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2‐trifluoroethoxy) ethane (BTFEOE), by sum frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the ? CF3 end‐groups of the linear ether BTFEOE change their adsorption orientation on the a‐Si surface at OCP, leading to a better protective layer. Supporting evidence from ex situ scanning electron microscopy and X‐ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a‐Si surface and enables lithium ions to intercalate deeper into the a‐Si bulk.  相似文献   

13.
Na3V2(PO4)3 (NVP) has excellent electrochemical stability and fast ion diffusion coefficient due to the 3D Na+ ion superionic conductor framework, which make it an attractive cathode material for lithium ion batteries (LIBs). However, the electrochemical performance of NVP needs to be further improved for applications in electric vehicles and hybrid electric vehicles. Here, nanoflake‐assembled hierarchical NVP/C microflowers are synthesized using a facile method. The structure of as‐synthesized materials enhances the electrochemical performance by improving the electron conductivity, increasing electrode–electrolyte contact area, and shortening the diffusion distance. The as‐synthesized material exhibits a high capacity (230 mAh g?1), excellent cycling stability (83.6% of the initial capacity is retained after 5000 cycles), and remarkable rate performance (91 C) in hybrid LIBs. Meanwhile, the hybrid LIBs with the structure of NVP || 1 m LiPF6/EC (ethylene carbonate) + DMC (dimethyl carbonate) || NVP and Li4Ti5O12 || 1 m LiPF6/EC + DMC || NVP are assembled and display capacities of 79 and 73 mAh g?1, respectively. The insertion/extraction mechanism of NVP is systematically investigated, based on in situ X‐ray diffraction. The superior electrochemical performance, the design of hybrid LIBs, and the insertion/extraction mechanism investigation will have profound implications for developing safe and stable, high‐energy, and high‐power LIBs.  相似文献   

14.
Layered lithium nickel oxide (LiNiO2) can provide very high energy density among intercalation cathode materials for lithium‐ion batteries, but suffers from poor cycle life and thermal‐abuse tolerance with large lithium utilization. In addition to stabilization of the active cathode material, a concurrent development of electrolyte systems of better compatibility is critical to overcome these limitations for practical applications. Here, with nonaqueous electrolytes based on exclusively aprotic acyclic carbonates free of ethylene carbonate (EC), superior electrochemical and thermal characteristics are obtained with an ultrahigh‐nickel cathode (LiNi0.94Co0.06O2), capable of reaching a 235 mA h g?1 specific capacity. Pouch‐type graphite|LiNi0.94Co0.06O2 cells in EC‐free electrolytes withstand several hundred charge–discharge cycles with minor degradation at both ambient and elevated temperatures. In thermal‐abuse tests, the cathode at full charge, while reacting aggressively with EC‐based electrolytes below 200 °C, shows suppressed self‐heating without EC. Through 3D chemical and structural analyses, the intriguing impact of EC is visualized in aggravating unwanted surface parasitic reactions and irreversible bulk structural degradation of the cathode at high voltages. These results provide important insights in designing high‐energy electrodes for long‐lasting and reliable lithium‐ion batteries.  相似文献   

15.
Lithium–metal fluoride batteries promise significantly higher energy density than the state‐of‐the‐art lithium‐ion batteries and lithium–sulfur batteries. Unfortunately, commercialization of metal fluoride cathodes is prevented by their high resistance, irreversible structural change, and rapid degradation. In this study, a substantial boost in metal fluoride (MF) cathode stability by designing nanostructure with two layers of protective shells—one deposited ex situ and the other in situ is demonstrated. Such methodology achieves over 90% capacity retention after 300 charge–discharge cycles, producing the first report on FeF3 as a cathode material, where a very high capacity utilization in combination with excellent stability is approaching the level needed for practical applications of FeF3. The cathode solid electrolyte interphase (CEI) containing lithium oxalate and B? F bond containing anions is found to effectively protect the cathode material from direct contact with electrolytes, thus greatly suppressing the dissolution of Fe. Quantum chemistry and molecular dynamics calculations provide unique insights into the mechanisms of CEI layer formation. As a result, this work not only demonstrates unprecedented performance, but also provides the reader with a better fundamental understanding of electrochemical behavior of MF cathodes and the positive impact observed with the application of a lithium bis(oxalato)borate salt in the electrolyte.  相似文献   

16.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

17.
A high voltage LiNi0.5Mn0.3Co0.2O2/graphite cell with a fluorinated electrolyte formulation 1.0 m LiPF6 fluoroethylene carbonate/bis(2,2,2‐trifluoroethyl) carbonate is reported and its electrochemical performance is evaluated at cell voltage of 4.6 V. Comparing with its nonfluorinated electrolyte counterpart, the reported fluorinated one shows much improved Coulombic efficiency and capacity retention when a higher cut‐off voltage (4.6 V) is applied. Scanning electron microscopy/energy dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy data clearly demonstrate the superior oxidative stability of the new electrolyte. The structural stability of the bulk cathode materials cycled with different electrolytes is extensively studied by X‐ray absorption near edge structure and X‐ray diffraction.  相似文献   

18.
New energy storage and conversion systems require large‐scale, cost‐effective, good safety, high reliability, and high energy density. This study demonstrates a low‐cost and safe aqueous rechargeable lithium‐nickel (Li‐Ni) battery with solid state Ni(OH)2/NiOOH redox couple as cathode and hybrid electrolytes separated by a Li‐ion‐conductive solid electrolyte layer. The proposed aqueous rechargeable Li‐Ni battery exhibits an approximately open‐circuit potential of 3.5 V, outperforming the theoretic stable window of water 1.23 V, and its energy density can be 912.6 W h kg‐1, which is much higher than that of state‐of‐the‐art lithium ion batteries. The use of a solid‐state redox couple as cathode with a metallic lithium anode provides another postlithium chemistry for practical energy storage and conversion.  相似文献   

19.
Intensive studies of an advanced energy material are reported and lithium polyacrylate (LiPAA) is proven to be a surprisingly unique, multifunctional binder for high‐voltage Li‐ion batteries. The absence of effective passivation at the interface of high‐voltage cathodes in Li‐ion batteries may negatively affect their electrochemical performance, due to detrimental phenomena such as electrolyte solution oxidation and dissolution of transition metal cations. A strategy is introduced to build a stable cathode–electrolyte solution interphase for LiNi0.5Mn1.5O4 (LNMO) spinel high‐voltage cathodes during the electrode fabrication process by simply using LiPAA as the cathode binder. LiPAA is a superb binder due to unique adhesion, cohesion, and wetting properties. It forms a uniform thin passivating film on LNMO and conducting carbon particles in composite cathodes and also compensates Li‐ion loss in full Li‐ion batteries by acting as an extra Li source. It is shown that these positive roles of LiPAA lead to a significant improvement in the electrochemical performance (e.g., cycle life, cell impedance, and rate capability) of LNMO/graphite battery prototypes, compared with that obtained using traditional polyvinylidene fluoride (PVdF) binder for LNMO cathodes. In addition, replacing PVdF with LiPAA binder for LNMO cathodes offers better adhesion, lower cost, and clear environmental advantages.  相似文献   

20.
Artificial solid‐electrolyte interphase (SEI) is one of the key approaches in addressing the low reversibility and dendritic growth problems of lithium metal anode, yet its current effect is still insufficient due to insufficient stability. Here, a new principle of “simultaneous high ionic conductivity and homogeneity” is proposed for stabilizing SEI and lithium metal anodes. Fabricated by a facile, environmentally friendly, and low‐cost lithium solid‐sulfur vapor reaction at elevated temperature, a designed lithium sulfide protective layer successfully maintains its protection function during cycling, which is confirmed by both simulations and experiments. Stable dendrite‐free cycling of lithium metal anode is realized even at a high areal capacity of 5 mAh cm?2, and prototype Li–Li4Ti5O12 cell with limited lithium also achieves 900 stable cycles. These findings give new insight into the ideal SEI composition and structure and provide new design strategies for stable lithium metal batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号