首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiber‐based power sources are receiving interest in terms of application in wearable electronic devices. Herein, fiber‐shaped all‐solid‐state asymmetric energy storage devices are fabricated based on a partially nitridized NiCo2O4 hybrid nanostructures on graphite fibers (GFs). The surface nitridation leads to a 3D “pearled‐veil” network structure, in which Ni–Co–N nanospheres are mounted on NiCo2O4 nanosheets' electrode. It is demonstrated that the hybrid materials are more potent than the pure NiCo2O4 in energy storage applications due to a cooperative effect between the constituents. The Ni–Co–N segments augment the pristine oxide nanosheets by enhancing both capacity and rate performance (a specific capacity of 384.75 mAh g−1 at 4 A g−1, and a capacity retention of 86.5% as the current is increased to 20 A g−1). The whole material system has a metallic conductivity that renders high‐rate charge and discharge, and an extremely soft feature, so that it can wrap around arbitrary‐shaped holders. All‐solid‐state asymmetric device is fabricated using Ni–Co–N/NiCo2O4/GFs and carbon nanotubes/GFs as the electrodes. The flexible device delivers outstanding performance compared to most oxide‐based full devices. These structured hybrid materials may find applications in miniaturized foldable energy devices.  相似文献   

2.
To push the energy density limit of supercapacitors, a new class of electrode materials with favorable architectures is strongly needed. Binary metal sulfides hold great promise as an electrode material for high‐performance energy storage devices because they offer higher electrochemical activity and higher capacity than mono‐metal sulfides. Here, the rational design and fabrication of NiCo2S4 nanosheets supported on nitrogen‐doped carbon foams (NCF) is presented as a novel flexible electrode for supercapacitors. A facile two‐step method is developed for growth of NiCo2S4 nanosheets on NCF with robust adhesion, involving the growth of Ni‐Co precursor and subsequent conversion into NiCo2S4 nanosheets through sulfidation process. Benefiting from the compositional features and 3D electrode architectures, the NiCo2S4/NCF electrode exhibits greatly improved electrochemical performance with ultrahigh capacitance (877 F g?1 at 20 A g?1) and excellent cycling stability. Moreover, a binder‐free asymmetric supercapacitor device is also fabricated by using NiCo2S4/NCF as the positive electrode and ordered mesoporous carbon (OMC)/NCF as the negative electrode; this demonstrates high energy density (≈45.5 Wh kg?1 at 512 W kg?1).  相似文献   

3.
Hierarchical hollow NiCo2S4 microspheres with a tunable interior architecture are synthesized by a facile and cost‐effective hydrothermal method, and used as a cathode material. A three‐dimensional (3D) porous reduced graphene oxide/Fe2O3 composite (rGO/Fe2O3) with precisely controlled particle size and morphology is successfully prepared through a scalable facile approach, with well‐dispersed Fe2O3 nanoparticles decorating the surface of rGO sheets. The fixed Fe2O3 nanoparticles in graphene efficiently prevent the intermediates during the redox reaction from dissolving into the electrolyte, resulting in long cycle life. KOH activation of the rGO/Fe2O3 composite is conducted for the preparation of an activated carbon material–based hybrid to transform into a 3D porous carbon material–based hybrid. An energy storage device consisting of hollow NiCo2S4 microspheres as the positive electrode, the 3D porous rGO/Fe2O3 composite as the negative electrode, and KOH solution as the electrolyte with a maximum energy density of 61.7 W h kg?1 is achieved owing to its wide operating voltage range of 0–1.75 V and the designed 3D structure. Moreover, the device exhibits a high power density of 22 kW kg?1 and a long cycle life with 90% retention after 1000 cycles at the current density of 1 A g?1.  相似文献   

4.
A hybrid nanoarchitecture aerogel composed of WS2 nanosheets and carbon nanotube‐reduced graphene oxide (CNT‐rGO) with ordered microchannel three‐dimensional (3D) scaffold structure was synthesized by a simple solvothermal method followed by freeze‐drying and post annealing process. The 3D ordered microchannel structures not only provide good electronic transportation routes, but also provide excellent ionic conductive channels, leading to an enhanced electrochemical performance as anode materials both for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Significantly, WS2/CNT‐rGO aerogel nanostructure can deliver a specific capacity of 749 mA h g?1 at 100 mA g?1 and a high first‐cycle coulombic efficiency of 53.4% as the anode material of LIBs. In addition, it also can deliver a capacity of 311.4 mA h g?1 at 100 mA g?1, and retain a capacity of 252.9 mA h g?1 at 200 mA g?1 after 100 cycles as the anode electrode of SIBs. The excellent electrochemical performance is attributed to the synergistic effect between the WS2 nanosheets and CNT‐rGO scaffold network and rational design of 3D ordered structure. These results demonstrate the potential applications of ordered CNT‐rGO aerogel platform to support transition‐metal‐dichalcogenides (i.e., WS2) for energy storage devices and open up a route for material design for future generation energy storage devices.  相似文献   

5.
Ternary NiCoFe‐layered double hydroxide (NiCoIIIFe‐LDH) with Co3+ is grafted on nitrogen‐doped graphene oxide (N‐GO) by an in situ growth route. The array‐like colloid composite of NiCoIIIFe‐LDH/N‐GO is used as a bifunctional catalyst for both oxygen evolution/reduction reactions (OER/ORR). The NiCoIIIFe‐LDH/N‐GO array has a 3D open structure with less stacking of LDHs and an enlarged specific surface area. The hierarchical structure design and novel material chemistry endow high activity propelling O2 redox. By exposing more amounts of Ni and Fe active sites, the NiCoIIIFe‐LDH/N‐GO illustrates a relatively low onset potential (1.41 V vs reversible hydrogen electrode) in 0.1 mol L?1 KOH solution under the OER process. Furthermore, by introducing high valence Co3+, the onset potential of this material in ORR is 0.88 V. The overvoltage difference is 0.769 V between OER and ORR. The key factors for the excellent bifunctional catalytic performance are believed to be the Co with a high valence, the N‐doping of graphene materials, and the highly exposed Ni and Fe active sites in the array‐like colloid composite. This work further demonstrates the possibility to exploit the application potential of LDHs as OER and ORR bifunctional electrochemical catalysts.  相似文献   

6.
The critical challenges of Li‐O2 batteries lie in sluggish oxygen redox kinetics and undesirable parasitic reactions during the oxygen reduction reaction and oxygen evolution reaction processes, inducing large overpotential and inferior cycle stability. Herein, an elaborately designed 3D hierarchical heterostructure comprising NiCo2S4@NiO core–shell arrays on conductive carbon paper is first reported as a freestanding cathode for Li‐O2 batteries. The unique hierarchical array structures can build up multidimensional channels for oxygen diffusion and electrolyte impregnation. A built‐in interfacial potential between NiCo2S4 and NiO can drastically enhance interfacial charge transfer kinetics. According to density functional theory calculations, intrinsic LiO2‐affinity characteristics of NiCo2S4 and NiO play an importantly synergistic role in promoting the formation of large peasecod‐like Li2O2, conducive to construct a low‐impedance Li2O2/cathode contact interface. As expected, Li‐O2 cells based on NiCo2S4@NiO electrode exhibit an improved overpotential of 0.88 V, a high discharge capacity of 10 050 mAh g?1 at 200 mA g?1, an excellent rate capability of 6150 mAh g?1 at 1.0 A g?1, and a long‐term cycle stability under a restricted capacity of 1000 mAh g?1 at 200 mA g?1. Notably, the reported strategy about heterostructure accouplement may pave a new avenue for the effective electrocatalyst design for Li‐O2 batteries.  相似文献   

7.
Sodium ion batteries (NIBs) have become attractive promising alternatives to lithium ion batteries in a broad field of future energy storage applications. The development of high‐performance anode materials has become an essential factor and a great challenge toward satisfying the requirements for NIBs, advancement. This work is the first report on GeS2 nanocomposites uniformly distributed on reduced graphene oxide (rGO) as promising anode materials for NIBs prepared via a facile hydrothermal synthesis and a unique carbo‐thermal annealing. The results show that the GeS2/rGO hybrid anode yields a high reversible specific capacity of 805 mA h g?1 beyond the theoretical capacity, an excellent rate capability of 616 mA h g?1 at 5 A g?1, and a cycle retention of 89.4% after 100 cycles. A combined ex situ characterization study reveals that the electrochemically driven amorphization plays a key role in achieving efficient sodium storage by accommodating excess sodium ions in the electrode materials. Understanding the sequential conversion‐alloying reaction mechanism for GeS2/rGO hybrid anodes provides a new approach for developing high‐performance energy storage applications.  相似文献   

8.
To overcome the low energy density bottleneck of graphene‐based supercapacitors and to organically endow them with high‐power density, ultralong‐life cycles, etc., one rational strategy that couple graphene sheets with multielectron, redox‐reversible, and structurally‐stable organic compounds. Herein, a graphene‐indanthrone (IDT) donor–π–acceptor heterojunction is conceptualized for efficient and smooth 6H+/6e? transfers from pseudocapacitive IDT molecules to electrochemical double‐layer capacitive graphene scaffolds. To construct this, water‐processable graphene oxide (GO) is employed as a graphene precursor, and to in situ exfoliate IDT industrial dyestuff, followed by a hydrothermally‐induced reduction toward GO and self‐assembly between reduced GO (rGO) donors (D) and IDT acceptors (A), affording rGO‐π‐IDT D–A heterojunctions. Electrochemical tests indicate that rGO‐π‐IDT heterojunctions deliver a gravimetric capacitance of 535.5 F g?1 and an amplified volumetric capacitance of 685.4 F cm?3. The assembled flexible all‐solid‐state supercapacitor yields impressive volumetric energy densities of 31.3 and 25.1 W h L?1, respectively, at low and high power densities of 767 and 38 554 W L?1, while exhibiting an exceptional rate capability, cycling stability, and enduring mechanically‐challenging bending and distortions. The concept and methodology may open up opportunities for other two‐dimensional materials and other energy‐related devices.  相似文献   

9.
Both the energy density and cycle stability are still challenges for lithium–sulfur (Li–S) batteries in future practical applications. Usually, light‐weight and nonpolar carbon materials are used as the hosts of sulfur, however they struggle on the cycle stability and undermine the volumetric energy density of Li–S batteries. Here, heavy NiCo2O4 nanofibers as carbon‐free sulfur immobilizers are introduced to fabricate sulfur‐based composites. NiCo2O4 can accelerate the catalytic conversion kinetics of soluble intermediate polysulfides by strong chemical interaction, leading to a good cycle stability of sulfur cathodes. Specifically, the S/NiCo2O4 composite presents a high gravimetric capacity of 1125 mAh g?1 at 0.1 C rate with the composite as active material, and a low fading rate of 0.039% per cycle over 1500 cycles at 1 C rate. In particular, the S/NiCo2O4 composite with the high tap density of 1.66 g cm?3 delivers large volumetric capacity of 1867 mAh cm?3, almost twice that of the conventional S/carbon composites.  相似文献   

10.
In this paper, a novel freestanding core‐branch negative and positive electrode material through integrating trim aligned Fe2O3 nanoneedle arrays (Fe2O3 NNAs) is first proposed with typical mesoporous structures and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays (NiCo2O4/Ni(OH)2 HNAs) on SiC nanowire (SiC NW) skeletons with outstanding resistance to oxidation and corrosion, good conductivity, and large‐specific surface area. The original built SiC NWs@Fe2O3 NNAs is validated to be a highly capacitive negative electrode (721 F g?1 at 2 A g?1, i.e., 1 F cm?2 at 2.8 mA cm?2), matching well with the similarly constructed SiC NWs@NiCo2O4/Ni(OH)2 HNAs positive electrode (2580 F g?1 at 4 A g?1, i.e., 3.12 F cm?2 at 4.8 mA cm?2). Contributed by the uniquely engineered electrodes, a high‐performance asymmetric supercapacitor (ASC) is developed, which can exhibit a maximum energy density of 103 W h kg?1 at a power density of 3.5 kW kg?1, even when charging the device within 6.5 s, the energy density can still maintain as high as 45 W h kg?1 at 26.1 kW kg?1, and the ASC manifests long cycling lifespan with 86.6% capacitance retention even after 5000 cycles. This pioneering work not only offers an attractive strategy for rational construction of high‐performance SiC NW‐based nanostructured electrodes materials, but also provides a fresh route for manufacturing next‐generation high‐energy storage and conversion systems.  相似文献   

11.
A homologous Ni–Co based nanowire system, consisting of both nickel cobalt oxide and nickel cobalt sulfide nanowires, is developed for efficient, complementary water splitting. The spinel‐type nickel cobalt oxide (NiCo2O4) nanowires are hydrothermally synthesized and can serve as an excellent oxygen evolution reaction catalyst. Subsequent sulfurization of the NiCo2O4 nanowires leads to the formation of pyrite‐type nickel cobalt sulfide (Ni0.33Co0.67S2) nanowires. Due to the 1D nanowire morphology and enhanced charge transport capability, the Ni0.33Co0.67S2 nanowires function as an efficient, stable, and robust nonnoble metal electrocatalyst for hydrogen evolution reaction (HER), substantially exceeding CoS2 or NiS2 nanostructures synthesized under similar methods. The Ni0.33Co0.67S2 nanowires exhibit low onset potential of ?65, ?39, and ?50 mV versus reversible hydrogen electrode, Tafel slopes of 44, 68, and 118 mV dec?1 at acidic, neutral, and basic conditions, respectively, and excellent stability, comparable to the best reported non‐noble metal‐based HER catalysts. Furthermore, the homologous Ni0.33Co0.67S2 nanowires and NiCo2O4 nanowires are assembled into an all‐nanowire based water splitting electrolyzer with a current density of 5 mA cm?2 at a voltage as 1.65 V, thus suggesting a unique homologous, earth abundant material system for water splitting.  相似文献   

12.
Compact, light, and powerful energy storage devices are urgently needed for many emerging applications; however, the development of advanced power sources relies heavily on advances in materials innovation. Here, the findings in rational design, one‐pot synthesis, and characterization of a series of Ni hydroxide‐based electrode materials in alkaline media for fast energy storage are reported. Under the guidance of density functional theory calculations and experimental investigations, a composite electrode composed of Co‐/Mn‐substituted Ni hydroxides grown on reduced graphene oxide (rGO) is designed and prepared, demonstrating capacities of 665 and 427 C g?1 at current densities of 2 and 20 A g?1, respectively. The superior performance is attributed mainly to the low deprotonation energy and the facile electron transport, as elaborated by theoretical calculations. When coupled with an electrode based on organic molecular‐modified rGO, the resulting hybrid device demonstrates an energy density of 74.7 W h kg?1 at a power density of 1.68 kW kg?1 while maintaining capacity retention of 91% after 10,000 cycles (20 A g?1). The findings not only provide a promising electrode material for high‐performance hybrid capacitors but also open a new avenue toward knowledge‐based design of efficient electrode materials for other energy storage applications.  相似文献   

13.
A simple ball‐milling method is used to synthesize a tin oxide‐silicon carbide/few‐layer graphene core‐shell structure in which nanometer‐sized SnO2 particles are uniformly dispersed on a supporting SiC core and encapsulated with few‐layer graphene coatings by in situ mechanical peeling. The SnO2‐SiC/G nanocomposite material delivers a high reversible capacity of 810 mA h g?1 and 83% capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g?1. A high reversible capacity of 425 mA h g?1 also can be obtained at a rate of 2 A g?1. When discharged (Li extraction) to a higher potential at 3.0 V (vs. Li/Li+), the SnO2‐SiC/G nanocomposite material delivers a reversible capacity of 1451 mA h g?1 (based on the SnO2 mass), which corresponds to 97% of the expected theoretical capacity (1494 mA h g?1, 8.4 equivalent of lithium per SnO2), and exhibits good cyclability. This result suggests that the core‐shell nanostructure can achieve a completely reversible transformation from Li4.4Sn to SnO2 during discharging (i.e., Li extraction by dealloying and a reversible conversion reaction, generating 8.4 electrons). This suggests that simple mechanical milling can be a powerful approach to improve the stability of high‐performance electrode materials involving structural conversion and transformation.  相似文献   

14.
A new form of TiO2 microspheres comprised of anatase/TiO2‐B ultrathin composite nanosheets has been synthesized successfully and used as Li‐ion storage electrode material. By comparison between samples obtained with different annealing temperatures, it is demonstrated that the anatase/TiO2‐B coherent interfaces may contribute additional lithium storage venues due to a favorable charge separation at the boundary between the two phases. The as‐prepared hierarchical nanostructures show capacities of 180 and 110 mAh g?1 after 1000 cycles at current densities of 3400 and 8500 mA g?1. The ultrathin nanosheet structure which provides short lithium diffusion length and high electrode/electrolyte contact area also accounts for the high capacity and long‐cycle stability.  相似文献   

15.
The intricate charge–discharge reactions and bad conductivity nature of sulfur determine the extreme importance of cathode engineering for Li–S batteries. Herein, spinel ZnCo2O4 porous particles@N‐doped reduced graphene oxide (ZnCo2O4@N‐RGO) are prepared via the combined procedures of refluxing and hydrothermal treatment, consisting of interconnected uniform ZnCo2O4 nanocubes with an average size of 5 nm anchored on graphene nanosheets. The as‐obtained composite can act as an inimitable cathode scaffold to suppress the shuttling of polysulfides by chemical confinement of ZnCo2O4 and N‐RGO for the first time, as demonstrated by the adsorption energy of ZnCo2O4 to Li2S4 via the strong chemical bonding between Zn or Co and S. The RGO nanosheets with a relatively high specific surface area provide a good conductive network and structural stability. The introduction of doped N atoms and numerous ZnCo2O4 porous nanoparticles can inhibit the transfer of lithium polysulfides between the cathode and anode. Due to the unique structural and compositional features, the as‐obtained hybrid materials with the high sulfur loading of 71% and even 82% still deliver high specific capacity, good rate capability, and enhanced cycling stability with exceptionally high initial Coulombic efficiency, which displays a high utilization of sulfur.  相似文献   

16.
Two‐dimensional (2D) nanomaterials are widely recognized as an important class of functional materials possessing superior electrochemical reaction kinetics. Herein, an L‐aspartic acid (AA)‐modified graphene oxide (GO) templating strategy is developed to in situ yield ultrathin (i.e., ≈5 nm) cobalt carbonate hydroxide (Co2(OH)2CO3) nanosheets as advanced anode materials of lithium ion batteries. Notably, the covalent tethering of AA on the GO surface renders a high density of carboxyl groups that impart effective loading of Co‐containing precursors and subsequent growth into Co2(OH)2CO3 nanosheets bridging adjacent GO layers. The lasagna‐like Co2(OH)2CO3‐GO nanocomposites exhibit an ultrahigh lithium storage capacity of 1770 mAh g?1 after 500 cycles at 100 mA g?1. It is noteworthy that the cycled Co2(OH)2CO3 phase separates into homogeneously dispersed Co(OH)2 and CoCO3 phases with two different charge plateaus at ≈1.2 and 2.0 V, respectively, which effectively inhibit large‐scale homophase coarsening of Co, Li2CO3, and LiOH. The much shortened Li+/e? transfer distance enabled by individual ultrathin Co2(OH)2CO3 nanosheet together with robust layer‐by‐layer assembled nanostructure of Co2(OH)2CO3‐GO confers the superior electrochemical reactivity and mechanical stability. As such, the amino acid‐modified GO templating strategy may represent a simple yet robust means of crafting a variety of 2D nanostructured composites of interest for energy storage applications.  相似文献   

17.
Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres are synthesized through a three‐step hydrothermal procedure. The average thickness of the Li4Ti5O12 sheets is only ≈(6.6 ± 0.25) nm and the specific surface area of the sample is 178 m2 g?1. When applied into lithium ion batteries as anode materials, the hierarchical Li4Ti5O12 microspheres exhibit high specific capacities at high rates (156 mA h g?1 at 20 C, 150 mA h g?1 at 50 C) and maintain a capacity of 126 mA h g?1 after 3000 cycles at 20 C. The results clearly suggest that the utility of hierarchical structures based on ultrathin nanosheets can promote the lithium insertion/extraction reactions in Li4Ti5O12. The obtained hierarchical Li4Ti5O12 with ultrathin nanosheets and large specific surface area can be perfect anode materials for the lithium ion batteries applied in high power facilities, such as electric vehicles and hybrid electric vehicles.  相似文献   

18.
Controlling the internal microstructure and overall morphology of building blocks used to form hybrid materials is crucial for the realization of deterministically designed architectures with desirable properties. Here, integrative spray‐frozen (SF) assembly is demonstrated for forming hierarchically structured open‐porous microspheres (hpMSs) composed of Fe3O4 and reduced graphene oxide (rGO). The SF process drives the formation of a radially aligned microstructure within the sprayed colloidal droplets and also controls the overall microsphere morphology. The spherical Fe3O4/rGO hpMSs contain interconnected open pores, which, when used as a lithium‐ion battery anode, enables them to provide gravimetric and volumetric capacities of 1069.7 mAh g?1 and 686.7 mAh cm?3, much greater than those of samples with similar composition and different morphologies. The hpMSs have good rate and cycling performance, retaining 78.5% capacity from 100 to 1000 mA g?1 and 74.6% capacity over 300 cycles. Using in situ synchrotron X‐ray absorption spectroscopy, the reaction pathway and phase evolution of the hpMSs are monitored enabling observation of the very small domain size and highly disordered nature of FexOy. The reduced capacity fade relative to other conversion systems is due to the good electrical contact between the pulverized FexOy particles and rGO, the overall structural integrity of the hpMSs, and the interconnected open porosity.  相似文献   

19.
Covalent organic framework (COF) can grow into self‐exfoliated nanosheets. Their graphene/graphite resembling microtexture and nanostructure suits electrochemical applications. Here, covalent organic nanosheets (CON) with nanopores lined with triazole and phloroglucinol units, neither of which binds lithium strongly, and its potential as an anode in Li‐ion battery are presented. Their fibrous texture enables facile amalgamation as a coin‐cell anode, which exhibits exceptionally high specific capacity of ≈720 mA h g?1 (@100 mA g?1). Its capacity is retained even after 1000 cycles. Increasing the current density from 100 mA g?1 to 1 A g?1 causes the specific capacity to drop only by 20%, which is the lowest among all high‐performing anodic COFs. The majority of the lithium insertion follows an ultrafast diffusion‐controlled intercalation (diffusion coefficient, DLi+ = 5.48 × 10?11 cm2 s?1). The absence of strong Li‐framework bonds in the density functional theory (DFT) optimized structure supports this reversible intercalation. The discrete monomer of the CON shows a specific capacity of only 140 mA h g?1 @50 mA g?1 and no sign of lithium intercalation reveals the crucial role played by the polymeric structure of the CON in this intercalation‐assisted conductivity. The potentials mapped using DFT suggest a substantial electronic driving‐force for the lithium intercalation. The findings underscore the potential of the designer CON as anode material for Li‐ion batteries.  相似文献   

20.
Reduced graphene oxide (rGO) is used as a conductive additive for nanosilicon‐based lithium battery anodes with the high active‐mass loading typically required for industrial applications. In contrast to conventional Si electrodes that use acetylene black (AcB) as an additive, the rGO system shows pronounced improvement of electrochemical performance, irrespective of the cycling conditions. With capacity limitation, the rGO system results in improved coulombic efficiency (99.9%) and longer cycle life than conventional electrodes. Upon cycling without capacity limitation, much higher discharge capacity is maintained (2000 mAh g?1 after 100 cycles for 2.5 mg of Si cm?2). Used in conjunction with the bridging carboxymethyl cellulose binder, the crumpled and resilient rGO allows highly reversible functioning of the electrode in which the Si particles repeatedly inflate and deflate upon alloying and dealloying with lithium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号