首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new concept of multiple redox semi‐solid‐liquid (MRSSL) flow battery that takes advantage of active materials in both liquid and solid phases, is proposed and demonstrated. Liquid lithium iodide (LiI) electrolyte and solid sulfur/carbon (S/C) composite, forming LiI‐S/C MRSSL catholyte, are employed to demonstrate this concept. Record volumetric capacity (550 Ah L?1catholyte) is achieved using highly concentrated and synergistic multiple redox reactions of LiI and sulfur. The liquid LiI electrolyte is found to increase the reversible volumetric capacity of the catholyte, improve the electrochemical utilization of the S/C composite, and reduce the viscosity of catholyte. A continuous flow test is demonstrated and the influence of the flow rate on the flow battery performance is discussed. The MRSSL flow battery concept transforms inactive component into bi‐functional active species and creates synergistic interactions between multiple redox couples, offering a new direction and wide‐open opportunities to develop high‐energy‐density flow batteries.  相似文献   

2.
A non‐aqueous lithium‐ion redox flow battery employing organic molecules is proposed and investigated. 2,5‐Di‐tert‐butyl‐1,4‐bis(2‐methoxyethoxy)benzene and a variety of molecules derived from quinoxaline are employed as initial high‐potential and low‐potential active materials, respectively. Electrochemical measurements highlight that the choice of electrolyte and of substituent groups can have a significant impact on redox species performance. The charge‐discharge characteristics are investigated in a modified coin‐cell configuration. After an initial break‐in period, coulombic and energy efficiencies for this unoptimized system are ~70% and ~37%, respectively, with major charge and discharge plateaus between 1.8‐2.4 V and 1.7‐1.3 V, respectively, for 30 cycles. Performance enhancements are expected with improvements in cell design and materials processing.  相似文献   

3.
Redox‐active organometallic molecules offer a promising avenue for increasing the energy density and cycling stability of redox flow batteries. The molecular properties change dramatically as the ligands are functionalized and these variations allow for improving the solubility and controlling the redox potentials to optimize their performance when used as electrolytes. Unfortunately, it has been difficult to predict and design the stability of redox‐active molecules to enhance cyclability in a rational manner, in part because the relationship between electronic structure and redox behavior has been neither fully understood nor systematically explored. In this work, rational strategies for exploiting two common principles in organometallic chemistry for enhancing the robustness of pseudo‐octahedral cobalt–polypyridyl complexes are developed. Namely, the spin‐crossover between low and high‐spin states and the chelation effect emerging from replacing three bidentate ligands with two tridentate analogues. Quantum chemical models are used to conceptualize the approach and make predictions that are tested against experiments by preparing prototype Co‐complexes and profiling them as catholytes and anolytes. In good agreement with the conceptual predictions, very stable cycling performance over 600 cycles is found.  相似文献   

4.
Recently, anionic‐redox‐based materials have shown promising electrochemical performance as cathode materials for sodium‐ion batteries. However, one of the limiting factors in the development of oxygen‐redox‐based electrodes is their low operating voltage. In this study, the operating voltage of oxygen‐redox‐based electrodes is raised by incorporating nickel into P2‐type Na2/3[Zn0.3Mn0.7]O2 in such a way that the zinc is partially substituted by nickel. As designed, the resulting P2‐type Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2 electrode exhibits an average operating voltage of 3.5 V and retains 95% of its initial capacity after 200 cycles in the voltage range of 2.3–4.6 V at 0.1C (26 mA g?1). Operando X‐ray diffraction analysis reveals the reversible phase transition: P2 to OP4 phase on charge and recovery to the P2 phase on discharge. Moreover, ex situ X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies reveal that the capacity is generated by the combination of Ni2+/Ni4+ and O2?/O1? redox pairs, which is supported by first‐principles calculations. It is thought that this kind of high voltage redox species combined with oxygen redox could be an interesting approach to further increase energy density of cathode materials for not only sodium‐based rechargeable batteries, but other alkali‐ion battery systems.  相似文献   

5.
6.
A cathode‐flow lithium‐iodine (Li–I) battery is proposed operating by the triiodide/iodide (I3?/I?) redox couple in aqueous solution. The aqueous Li–I battery has noticeably high energy density (≈0.28 kWh kg?1cell) because of the considerable solubility of LiI in aqueous solution (≈8.2 m ) and reasonably high power density (≈130 mW cm?2 at a current rate of 60 mA cm?2, 328 K). In the operation of cathode‐flow mode, the Li–I battery attains high storage capacity (≈90% of the theoretical capacity), Coulombic efficiency (100% ± 1% in 2–20 cycles) and cyclic performance (>99% capacity retention for 20 cycles) up to total capacity of 100 mAh.  相似文献   

7.
Recently developed quantitative redox proteomic studies enable the direct identification of redox‐sensing cysteine residues that regulate the functional behavior of target proteins in response to changing levels of reactive oxygen species. At the molecular level, redox regulation can directly modify the active sites of enzymes, although a growing number of examples indicate the importance of an additional underlying mechanism that involves conditionally disordered proteins. These proteins alter their functional behavior by undergoing a disorder‐to‐order transition in response to changing redox conditions. However, the extent to which this mechanism is used in various proteomes is currently unknown. Here, a recently developed sequence‐based prediction tool incorporated into the IUPred2A web server is used to estimate redox‐sensitive conditionally disordered regions at a large scale. It is shown that redox‐sensitive conditional disorder is fairly widespread in various proteomes and that its presence strongly correlates with the expansion of specific domains in multicellular organisms that largely rely on extra stability provided by disulfide bonds or zinc ion binding. The analyses of yeast redox proteomes and human disease data further underlie the significance of this phenomenon in the regulation of a wide range of biological processes, as well as its biomedical importance.  相似文献   

8.
Graphene as a powerful inorganic material such as excellent conductivity and ideal mechanical strength has recently been extensively utilized to develop flexible strain sensors. However, graphene‐based strain sensors usually suffer from the deficiencies of stretchability, sensitivity, and sensing range, which can restrict their applications in wearable devices. Here, a novel strain sensor is designed by integrating graphene/ecoflex film and meandering zinc wire into the flexible base. The constructed strain sensor not only possesses high stretchability of up to 150% strain but can also self‐generates current signals from redox‐induced electricity, where the stable current and voltage signals of about 75 µA and 0.83 V can be obtained, respectively. Furthermore, the self‐powered sensor presents a broad and linear sensing range of 25% to 150% strains and a fast response time of less than 0.11 s. Attached on human body, the sensor has been utilized to realize the motion detection of knee joint.  相似文献   

9.
10.
The charged, electroactive bipyridine‐helicene‐ruthenium(III) complex [ 4 ] . +,PF6? has been prepared from 3‐(2‐pyridyl)‐4‐aza[6]helicene and a Ru‐bis‐(β‐diketonato)‐bis‐acetonitrile precursor (β‐diketonato: 2,2,6,6‐tetramethyl‐3,5‐heptanedionato). Its chiroptical properties (electronic circular dichroism and optical rotation) were studied both experimentally and theoretically and suggest the presence of 2 diastereoisomers, namely (P,Δ)‐ and (P,Λ)‐[ 4 ] . +,PF6? (denoted jointly as (P,Δ*)‐[ 4 ] . +,PF6?) and their mirror‐images (M,Λ)‐ and (M,Δ)‐[ 4 ] . +,PF6? ((M,Δ*)‐[ 4 ] . +,PF6?). The electrochemical reduction of (P,Δ*)‐[ 4 ] . +,PF6? to neutral complex (P,Δ*)‐ 4 was performed and revealed strong changes in the UV‐vis and electronic circular dichroism spectra. A reversible redox‐triggered chiroptical switching process was then achieved.  相似文献   

11.
Anatase TiO2 is an extensively studied anode material for lithium‐ion batteries because of its superior capability of storing Li+ electrochemically. Here reversible lithium storage of TiO2 is achieved chemically using redox targeting reactions. In the presence of a pair of redox mediators, bis(pentamethylcyclopentadienyl)cobalt (CoCp* 2) and cobaltocene (CoCp2) in an electrolyte, TiO2 and its lithiated form Li x TiO2 can be reduced and oxidized by CoCp* 2 and CoCp2 +, respectively, which accompany Li+ insertion and extraction, albeit without attaching the TiO2 onto the electrode. The reversible chemical lithiation/delithiation and the involved phase transitions are unambiguously confirmed using density functional theory (DFT) calculations, UV‐vis spectroscopy, X‐ray photoelectron spectoscopy (XPS), and Raman spectroscopy. A redox flow lithium‐ion battery (RFLB) half‐cell is assembled and evaluated, which is a critical step towards the development of RFLB full cells.  相似文献   

12.
Some disulfide bonds perform important structural roles in proteins, but another group has functional roles via redox reactions. Forbidden disulfides are stressed disulfides found in recognizable protein contexts, which currently constitute more than 10% of all disulfides in the PDB. They likely have functional redox roles and constitute a major subset of all redox‐active disulfides. The torsional strain of forbidden disulfides is typically higher than for structural disulfides, but not so high as to render them immediately susceptible to reduction under physionormal conditions. Previously we characterized the most abundant forbidden disulfide in the Protein Data Bank, the aCSDn: a canonical motif in which disulfide‐bonded cysteine residues are positioned directly opposite each other on adjacent anti‐parallel β‐strands such that the backbone hydrogen‐bonded moieties are directed away from each other. Here we perform a similar analysis for the aCSDh, a less common motif in which the opposed cysteine residues are backbone hydrogen bonded. Oxidation of two Cys in this context places significant strain on the protein system, with the β‐chains tilting toward each other to allow disulfide formation. Only left‐handed aCSDh conformations are compatible with the inherent right‐handed twist of β‐sheets. aCSDhs tend to be more highly strained than aCSDns, particularly when both hydrogen bonds are formed. We discuss characterized roles of aCSDh motifs in proteins of the dataset, which include catalytic disulfides in ribonucleotide reductase and ahpC peroxidase as well as a redox‐active disulfide in P1 lysozyme, involved in a major conformation change. The dataset also includes many binding proteins.  相似文献   

13.
The all‐vanadium redox flow battery is a promising technology for large‐scale renewable and grid energy storage, but is limited by the low energy density and poor stability of the vanadium electrolyte solutions. A new vanadium redox flow battery with a significant improvement over the current technology is reported in this paper. This battery uses sulfate‐chloride mixed electrolytes, which are capable of dissolving 2.5 M vanadium, representing about a 70% increase in energy capacity over the current sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of ?5 to 50 °C, potentially eliminating the need for electrolyte temperature control in practical applications. This development would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.  相似文献   

14.
This article presents a new approach for environmentally benign, low‐cost batteries intended for single‐use applications. The proposed battery is designed and fabricated using exclusively organic materials such as cellulose, carbon, and wax and features an integrated quinone‐based redox chemistry to generate electricity within a compact form factor. This primary capillary flow battery is activated by the addition of a liquid sample and has shown continuous operation up to 100 min with an output voltage that can be conveniently scaled to match the voltage needs of portable electronic devices (1.5–3.0 V). Once depleted, the battery can be disposed of without the need for any recycling facility, as its components are nontoxic and shown to be biotically degradable in a standardized test. The practical utility of the battery is demonstrated by direct substitution of a lithium ion coin cell in a diagnostic application.  相似文献   

15.
Events that control developmental changes occur during specific windows of gestation and if disrupted, can lead to dysmorphogenesis or embryolethality. One largely understudied aspect of developmental control is redox regulation, where the untimely disruption of intracellular redox potentials (Eh) may alter development, suggesting that tight control of developmental‐stage–specific redox states is necessary to support normal development. In this study, mouse gestational day 8.5 embryos in whole embryo culture were treated with 10 μM dithiole‐3‐thione (D3T), an inducer of nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2). After 14 hr, D3T‐treated and ‐untreated conceptuses were challenged with 200 μM hydrogen peroxide (H2O2) to induce oxidant‐induced change to intracellular Ehs. Redox potentials of glutathione (GSH), thioredoxin‐1 (Trx1), and mitochondrial thioredoxin‐2 (Trx2) were then measured over a 2‐hr rebounding period following H2O2 treatment. D3T treatment increased embryonic expression of known Nrf2‐regulated genes, including those responsible for redox regulation of major intracellular redox couples. Exposure to H2O2 without prior D3T treatment produced significant oxidation of GSH, Trx1, and Trx2, based on Eh values, where GSH and Trx2 Eh recovered, reaching to pre‐H2O2 Eh ranges, but Trx1 Eh remained oxidized. Following H2O2 addition in culture to embryos that received D3T pretreatments, GSH, Trx1, and Trx2 were insulated from significant oxidation. These data show that Nrf2 activation may serve as a means to protect the embryo from chemically induced oxidative stress through the preservation of intracellular redox states during development, allowing normal morphogenesis to ensue.  相似文献   

16.
Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.  相似文献   

17.
18.
Oxygen functional groups play a key role in vanadium redox reactions. To identify the effective location of oxygen functionalities in graphene‐based nanomaterials, a selectively edge‐functionalized graphene nanoplatelet (E‐GnP) with a crystalline basal plane is produced by a ball‐milling process in the presence of dry ice. For comparison, the reduced graphene oxide (rGO) that contains defects at both edges and in the basal plane is produced by a modified Hummers' method. The location of defects in the graphene‐based nanomaterials significantly affects the electrocatalytic activity towards vanadium redox couples (V2+/V3+ and VO2+/VO2 +). The improved activity of these nanoplatelets lies in the presence of oxygen defects at the edge sites and higher crystallinity of basal planes than in rGO. This effective location of oxygen defects facilitates fast electron‐transfer and mass‐transport processes.  相似文献   

19.
Klebsiella pneumoniae HR526, a new isolated 1,3‐propanediol (1,3‐PD) producer, exhibited great productivity. However, the accumulation of lactate in the late‐exponential phase remained an obstacle of 1,3‐PD industrial scale production. Hereby, mutants lacking D ‐lactate pathway were constructed by knocking out the ldhA gene encoding fermentative D ‐lactate dehydrogenase (LDH) of HR526. The mutant K. pneumoniae LDH526 with the lowest LDH activity was studied in aerobic fed‐batch fermentation. In experiments using pure glycerol as feedstock, the 1,3‐PD concentrations, conversion, and productivity increased from 95.39 g L?1, 0.48 and 1.98 g L?1 h?1 to 102. 06 g L?1, 0.52 mol mol?1 and 2.13 g L?1 h?1, respectively. The diol (1,3‐PD and 2,3‐butanediol) conversion increased from 0.55 mol mol?1 to a maximum of 0.65 mol mol?1. Lactate would not accumulate until 1,3‐PD exceeded 84 g L?1, and the final lactate concentration decreased dramatically from more than 40 g L?1 to <3 g L?1. Enzymic measurements showed LDH activity decreased by 89–98% during fed‐batch fermentation, and other related enzyme activities were not affected. NADH/NAD+ enhanced more than 50% in the late‐exponential phase as the D ‐lactate pathway was cut off, which might be the main reason for the change of final metabolites concentrations. The ability to utilize crude glycerol from biodiesel process and great genetic stability demonstrated that K. pnemoniae LDH526 was valuable for 1,3‐PD industrial production. Biotechnol. Bioeng. 2009; 104: 965–972. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Electrochemically driven chemical transformations play the key role in controlling storage of energy in chemical bonds and subsequent conversion to power electric vehicles and consumer electronics. The promise of coupling anionic oxygen redox with cationic redox to achieve a substantial increase in capacities has inspired research in a wide range of electrode materials. A key challenge is that these studies have focused on polycrystalline materials, where it is hard to perform precise structural determinations, especially related to the location of light atoms. Here a different approach is utilized and a highly ordered single crystal, Na2?xIrO3 is harnessed, to explore the role of defects and structural transformations in layered transition metal oxide materials on redox‐activity, capacity, reversibility, and stability. Within a combined experimental and theoretical framework, it is demonstrated that 1) it is possible to cycle Na2?xIrO3, offering proof of principle for single‐crystal based batteries 2) structural phase transitions coincide with Ir 4+/Ir 5+ redox couple with no evident contribution from anionic redox 3) strong irreversibility and capacity fade observed during cycling correlates with the Na + migration resulting in progressive growth of an electrochemically inert O3‐type NaIrO3 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号