首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence of a 2.67-kilobase section of the Escherichia coli chromosome that contains the rep gene has been determined. This gene codes for a protein of predicted Mr 72,800, a DNA helicase, which is also a single-stranded DNA-dependent ATPase. The sequenced region contains an open reading frame of the correct length and orientation to encode the Rep protein. A secondary structure for the protein can be formulated from the amino acid sequence. We have compared both the primary and the secondary structures of Rep with other proteins and find the greatest homology between Rep and E. coli helicase II, the product of the uvrD gene.  相似文献   

2.
The protein product of the rep gene of Escherichia coli is required for the replication of certain bacteriophage genomes (phi X174, fd, P2) and for the normal replication of E. coli DNA. We have used a specialized transducing phage, lambda p rep+, which complements the defect of rep mutants, to identify the rep protein. The rep protein has been purified from cells infected with lambda p rep+ phage; it has a molecular weight of about 70 000 and appears similar to the protein found in normal cells. Stimulation of phi X174 replicative form DNA synthesis in vitro was observed when highly purified rep protein was supplied to a cell extract derived from phi X-infected E. coli rep cells and supplemented with replicative form DNA. The purified protein has a single-stranded DNA-dependent ATPase activity and is capable of sensitizing duplex DNA to nucleases specific for single-stranded DNA. For this reason we propose the enzyme be called DNA helicase III. We infer that the rep protein uses the energy of hydrolysis of ATP to separate the strands of duplex DNA; the E. coli DNA binding protein need not be present. The rep3 mutant appeared to make a limited amount of active rep protein.  相似文献   

3.
4.
Nucleotide sequences were determined for a region essential for autonomous replication and partitioning of pSC101, a plasmid whose replication is dependent on the Escherichia coli dnaA gene product. The essential replication region contains one long coding sequence, rep101 , for a protein composed of 316 amino acids, and a polypeptide approximately 37 X 10(3) Mr in size was identified as the rep101 gene product. rep101 is preceded by two inverted repeat sequences, three directly repeated sequences and a region of high A + T content containing a sequence similar to the E. coli oriC consensus sequence. Because the lesions in seven replication-deficient insertion mutants, four mutants with increased copy number and one temperature-sensitive replication mutant occur within rep101 , the rep101 gene product must control pSC101 replication and copy number. par, a region adjacent to the replication region, which functions in stable plasmid inheritance, contains several inverted repeat sequences.  相似文献   

5.
The involvement of the Escherichia coli rep protein in the replication of M13 chimeric deoxyribonucleic acids (DNAs) carrying the E. coli chromosomal DNA replication origin (oriC) has been examined. Previous studies indicate that the cloning of a 3,550-base-pair sequence of chromosomal DNA containing oriC into an M13 vector allows extensive replication of the M13 oriC chimeric DNA in an E. coli rep-3 mutant. We have extended these studies by preparing a 330-base-pair deletion that specifically deletes the oriC sequence in the M13 oriC DNAs, to demonstrate that the replication observed in the rep-3 host is dependent on the cloned origin. Thus, a DNA-unwinding enzyme other than the rep protein may be involved in the strand separation process accompanying replication which initiates at oriC in the M13 oriC chimeric DNAs and in the E. coli chromosome. The rep assay used for assessing the functionality of the cloned oriC is useful for analysis of any rep-independent origin of replication functional in E. coli. A direct selection for a cloned origin of replication is possible in the rep-3 recA56 host. Since the cloned origin is nonessential for propagation of the M13 chimeric phage in a rep+ host, mutations in the cloned origin may be constructed, and the mutant phage may be examined by a simple transductional analysis of the rep-3 recA56 mutant strain.  相似文献   

6.
The gene for Escherichia coli rep helicase (rep protein) was subcloned in a pBR plasmid and the protein overproduced in cells transformed with the hybrid DNA. The effect of purified enzyme on strand unwinding and DNA replication was investigated by electron microscopy. The templates used were partial duplexes of viral DNA from bacteriophage fd::Tn5 and reannealed DNA from bacteriophage Mu. The experiments with the two DNA species show DNA unwinding uncoupled from replication. The single-stranded phage fd::Tn5 DNA with the inverted repeat of transposon Tn5 could be completely replicated in the presence of the E. coli enzymes rep helicase, DNA binding protein I, RNA polymerase and DNA polymerase III holoenzyme. A block in the unwinding step increases secondary initiation events in single-stranded parts of the template, as DNA polymerase III holoenzyme cannot switch across the stem structure of the transposon.  相似文献   

7.
The gene A protein of bacteriophage phi X 174 initiates replication of super-twisted RFI DNA by cleaving the viral (+) strand at the origin of replication and binding to the 5' end. Upon addition of E. coli rep protein (single-stranded DNA dependent ATPase), E. coli single-stranded DNA binding protein and ATP, complete unwinding of the two strands occurs. Electron microscopic analyses of intermediates in the reaction reveal that the unwinding occurs by movement of the 5' end into the duplex, displacing the viral strand in the form of a single-stranded loop. Since unwinding will not occur in the absence of either gene A protein or rep protein, it is presumed that the rep protein interacts to form a complex with the bound gene A protein. Single-stranded DNA binding protein facilitates the unwinding by binding to the exposed single-stranded DNA. Further addition of the four deoxyribotriphosphates and DNA polymerase III holoenzyme to the reaction results in synthesis of viral (+) single-stranded circles in amounts exceeding that of the input template. A model describing the role of gene A protein and rep protein in duplex DNA replication is presented and other properties of gene A protein discussed.  相似文献   

8.
9.
Lethality of rep recB and rep recC double mutants of Escherichia coli   总被引:4,自引:1,他引:3  
A rep mutation in combination with a recB or a recC mutation renders Escherichia coli non-viable. This conclusion is based on the following lines of evidence: (i) double mutants cannot be constructed by P1 transduction; (ii) induction of the λ Gam protein, which inactivates most of the RecBCD activities, is lethal in rep mutants; (iii) rep recBts recCts mutants are not viable at high temperature. The reasons for a requirement for the RecBCD enzyme in rep strains were investigated. Initiation of chromosome replication, elongation and chromosomal segregation do not seem impaired in the rep recBts recCts mutant at the non-permissive temperature. The viability of other rep derivatives was tested. rep recA recD triple mutants are not viable, whereas rep recD and rep recA double mutants are. Inactivation of both exoV activity and recBC -dependent homologous recombination is therefore responsible for the non-viability of rep recBC strains. However, sbcA and sbcB mutations, which render recBC mutants recombination proficient, do not restore viability of rep recBC mutants, indicating that recombination via the RecF or the RecE pathways cannot functionally replace RecBCD-mediated recombination. The specific requirement for RecBCD suggests the occurrence of double-strand DNA breaks in rep strains. Additional arguments in favour of the presence of DNA lesions in rep mutants are as follows: (i) expression of SOS repair functions delays lethality of rep derivatives after inactivation of RecBCD; (ii) sensitivity of rep strains to ultraviolet light is increased by partial inactivation of RecBCD. A model for the recovery of cells from double-strand breaks in rep mutants is discussed.  相似文献   

10.
11.
Location of rep and inc sequences in the F secondary replicon   总被引:6,自引:0,他引:6  
R Gardner  J McAnulty  E Feher  D Lane 《Plasmid》1985,13(2):145-148
Miniplasmids derived by deletion of DNA from the F plasmid secondary replicon have been tested for the ability to replicate and to express incompatibility with the IncFI plasmid, ColV3-K30. The results demonstrate that the minimal rep region of the secondary replicon lies within a 1.9-kb sequence (33.7F-35.6F kb), and that an inc region, presumably involved in replication control, is present in a 0.45-kb portion of the rep region (33.7F-34.15F kb). In addition, the secondary replicon was found not to require DNA polymerase I activity.  相似文献   

12.
The DNA sequence of the Escherichia coli metK gene has been determined. Protein sequence data for purified S-adenosylmethionine synthetase have also been obtained and confirm that metK is the structural gene for S-adenosylmethionine synthetase in E. coli. The sequence of the amino-terminal 35 residues of purified S-adenosylmethionine synthetase localizes the beginning of the coding region of the DNA. The open reading frame extends 1152 bases and codes for a 384-residue protein of Mr = 41,941. The gene is transcribed clockwise on the E. coli chromosome. The DNA region 5' to the coding region was found to contain symmetrical sequences suggestive of operator structures and homologous to sequences upstream from other met genes sharing the same regulatory mechanism.  相似文献   

13.
The DNA sequence of small cryptic plasmid pAG20 in Acetobacter aceti was determined at 3064 bp with 51.6% GC pairs. The plasmid encoded a 186 amino acid protein which is important for plasmid replication in Gram-negative bacteria except Escherichia coli. Two 21 bp large direct repeat sequence 1 and two 13 bp direct repeat sequence 2 were determined in the regulation region upstream from gene encoded Rep protein. Vector pAG24 with kanamycin gene and two deletion derivatives pAG25 and pAG26 without rep gene from plasmid pAG20 were constructed. Plasmid pAG24 was replicated in a broad host range like E. coli, Acetobacter pasteurianus, A. aceti, Comanomonas spp., Serratia marcescens, and Shigella spp.  相似文献   

14.
The product of the rep gene of Escherichia coli catalytically separates phiX174 duplex DNA strands in advance of their replication, utilizing ATP in the process (Scott, J. F., Eisenberg, S., Bertsch, L. L., and Kornberg, A. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 193-197). The enzyme has now been purified to near-homogeneity. Relatively large quantities were obtained from ColE1-plasmid-containing cells in which the enzyme level was 7 to 10 times above wild type. The assay for rep protein was based on its essential role, with phage-induced cistron A protein, in enzymatic synthesis of phage phiX174 (+) strands, using duplex circular DNA as template. The protein exhibits a molecular weight of 65,000 under denaturing and reducing conditions. The turnover number of the enzyme is approximately 6800 ATP molecules/min in strand separation as measured by extent of replication, or in an uncoupled reaction using single-stranded DNA effector.  相似文献   

15.
The nucleotide sequence was established for the rep gene of plasmid pSM1 isolated from cyanobacterium Plectonema boryanum CALU 465. Both nucleotide sequence and the encoded amino acid sequences showed 98% homology to the corresponding sequences of small plasmids pPF1, pGL3, pPBS1, pBLX, and pPB1. An active center was identified in the replicative protein sequences.  相似文献   

16.
The rep gene function of Escherichia coli is essential for the replication of P2 and phiX174 double-stranded deoxyribonucleic acid (DNA). Compared with isogenic rep(+) strains, rep mutants show the following characteristics: larger cell size, more DNA per cell, and a slightly lower DNA/mass ratio. The replicating rep chromosomes show a steeper gradient of marker frequencies and contain more replicating forks per chromosome. The nucleoid body of rep mutants sediments faster and contains more DNA. We deduce that the rep function is required for the "normal" replication of the E. coli chromosome and that in its absence the E. coli chromosome replicates in an altered manner, perhaps involving slower-moving replicating forks.  相似文献   

17.
18.
Adeno-associated virus (AAV) contains a multifunctional nonstructural gene, rep, which is required for AAV DNA replication and has pleiotropic effects on positive and negative regulation of gene expression. All of the parvovirus nonstructural genes contain a region of highly conserved amino acid homology. Within this conserved region is the consensus sequence for a purine nucleotide binding site. We constructed a mutant AAV having a mutation in this site by converting lysine 340 to histidine. The resulting mutant AAV genome, pNTC23, overproduced the mutant Rep proteins, indicating that these proteins are autoregulated. Furthermore, the mutant gene was unable to replicate but was able to inhibit in trans wild-type AAV DNA replication. Thus, pNTC23 represents a dominant negative mutant of AAV. These results suggest that rep has separate functional domains important for DNA replication.  相似文献   

19.
Relative map location of the rep and rho genes of Escherichia coli.   总被引:13,自引:11,他引:2       下载免费PDF全文
The rep gene of Escherichia coli was mapped between ilvC and rho by three-factor P1 transductional crosses and also by complementation with a set of lambda transducing phages that contain known amounts of bacterial DNA linked to ilvC. The physical distance between ilvC and rep and between rep and rho were calculated with an accuracy of +/- 0.4 kilobase to be 0 less than or equal to ilvC-rep less than or equal to 3.4 kilobases and 2.0 less than or equal to rep-rho less than or equal to 6.0 kilobases. It was shown that rho-15 is Gro+ for phage ST-1. An ilv::Tn10 mutation was located in ilvY.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号