首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factors (FGFs) mediate a multitude of physiological and pathological processes by activating a family of tyrosine kinase receptors (FGFRs). Each FGFR binds to a unique subset of FGFs and ligand binding specificity is essential in regulating FGF activity. FGF-7 recognizes one FGFR isoform known as the FGFR2 IIIb isoform or keratinocyte growth factor receptor (KGFR), whereas FGF-2 binds well to FGFR1, FGFR2, and FGFR4 but interacts poorly with KGFR. Previously, mutations in FGF-2 identified a set of residues that are important for high affinity receptor binding, known as the primary receptor-binding site. FGF-7 contains this primary site as well as a region that restricts interaction with FGFR1. The sequences that confer on FGF-7 its specific binding to KGFR have not been identified. By utilizing domain swapping and site-directed mutagenesis we have found that the loop connecting the beta4-beta5 strands of FGF-7 contributes to high affinity receptor binding and is critical for KGFR recognition. Replacement of this loop with the homologous loop from FGF-2 dramatically reduced both the affinity of FGF-7 for KGFR and its biological potency but did not result in the ability to bind FGFR1. Point mutations in residues comprising this loop of FGF-7 reduced both binding affinity and biological potency. The reciprocal loop replacement mutant (FGF2-L4/7) retained FGF-2 like affinity for FGFR1 and for KGFR. Our results show that topologically similar regions in these two FGFs have different roles in regulating receptor binding specificity and suggest that specificity may require the concerted action of distinct regions of an FGF.  相似文献   

2.
Fibroblast growth factors (FGFs) comprise a large family of multifunctional, heparin-binding polypeptides that show diverse patterns of interaction with a family of receptors (FGFR1 to -4) that are subject to alternative splicing. FGFR binding specificity is an essential mechanism in the regulation of FGF signaling and is achieved through primary sequence differences among FGFs and FGFRs and through usage of two alternative exons, IIIc and IIIb, for the second half of immunoglobulin-like domain 3 (D3) in FGFRs. While FGF4 binds and activates the IIIc splice forms of FGFR1 to -3 at comparable levels, it shows little activity towards the IIIb splice forms of FGFR1 to -3 as well as towards FGFR4. To begin to explore the structural determinants for this differential affinity, we determined the crystal structure of FGF4 at a 1.8-A resolution. FGF4 adopts a beta-trefoil fold similar to other FGFs. To identify potential receptor and heparin binding sites in FGF4, a ternary FGF4-FGFR1-heparin model was constructed by superimposing the FGF4 structure onto FGF2 in the FGF2-FGFR1-heparin structure. Mutation of several key residues in FGF4, observed to interact with FGFR1 or with heparin in the model, produced ligands with reduced receptor binding and concomitant low mitogenic potential. Based on the modeling and mutational data, we propose that FGF4, like FGF2, but unlike FGF1, engages the betaC'-betaE loop in D3 and thus can differentiate between the IIIc and IIIb splice isoforms of FGFRs for binding. Moreover, we show that FGF4 needs to interact with both the 2-O- and 6-O-sulfates in heparin to exert its optimal biological activity.  相似文献   

3.
Fibroblast growth factors (FGFs) mediate essential cellular functions by activating one of four alternatively spliced FGF receptors (FGFRs). To determine the mechanism regulating ligand binding affinity and specificity, soluble FGFR1 and FGFR3 binding domains were compared for activity. FGFR1 bound well to FGF2 but poorly to FGF8 and FGF9. In contrast, FGFR3 bound well to FGF8 and FGF9 but poorly to FGF2. The differential ligand binding specificity of these two receptors was exploited to map specific ligand binding regions in mutant and chimeric receptor molecules. Deletion of immunoglobulin-like (Ig) domain I did not effect ligand binding, thus localizing the binding region(s) to the distal two Ig domains. Mapping studies identified two regions that contribute to FGF binding. Additionally, FGF2 binding showed positive cooperativity, suggesting the presence of two binding sites on a single FGFR or two interacting sites on an FGFR dimer. Analysis of FGF8 and FGF9 binding to chimeric receptors showed that a broad region spanning Ig domain II and sequences further N-terminal determines binding specificity for these ligands. These data demonstrate that multiple regions of the FGFR regulate ligand binding specificity and that these regions are distinct with respect to different members of the FGF family.  相似文献   

4.
Sher I  Yeh BK  Mohammadi M  Adir N  Ron D 《FEBS letters》2003,552(2-3):150-154
Receptor binding specificity is an essential element in regulating the diverse activities of fibroblast growth factors (FGFs). FGF7 is ideal to study how this specificity is conferred at the structural level, as it interacts exclusively with one isoform of the FGF-receptor (FGFR) family, known as FGFR2IIIb. Previous mutational analysis suggested the importance of the beta4/beta5 loop of FGF7 in specific receptor recognition. Here a theoretical model of FGFR2IIIb/FGF7 complex showed that this loop interacts with the FGFR2IIIb unique exon. In addition, the model revealed new residues that either directly interact with the FGFR2IIIb unique exon (Asp63, Leu142) or facilitate this interaction (Arg65). Mutations in these residues reduced both receptor binding affinity and biological activity of FGF7. Altogether, these results provide the basis for understanding how receptor-binding specificity of FGF7 is conferred at the structural level.  相似文献   

5.
Heparan sulfates (HS) play an important role in the control of cell growth and differentiation by virtue of their ability to modulate the activities of heparin-binding growth factors, an issue that is particularly well studied for fibroblast growth factors (FGFs). HS/heparin co-ordinate the interaction of FGFs with their receptors (FGFRs) and are thought to play a critical role in receptor dimerization. Biochemical and crystallographic studies, conducted mainly with FGF-2 or FGF-1 and FGF receptors 1 and 2, suggests that an octasaccharide is the minimal length required for FGF- and FGFR-induced dimerization and subsequent activation. In addition, 6-O-sulfate groups are thought to be essential for binding of HS to FGFR and for receptor dimerization. We show here that oligosaccharides shorter than 8 sugar units support activation of FGFR2 IIIb by FGF-1 and interaction of FGFR4 with FGF-1. In contrast, only relatively long oligosaccharides supported receptor binding and activation in the FGF-1.FGFR1 or FGF-7.FGFR2 IIIb setting. In addition, both 6-O- and 2-O-desulfated heparin activated FGF-1 signaling via FGFR2 IIIb, whereas neither one stimulated FGF-1 signaling via FGFR1 or FGF-7 via FGFR2 IIIb. These findings indicate that the structure of HS required for activating FGFs is dictated by the specific FGF and FGFR combination. These different requirements may reflect the differences in the mode by which a given FGFR interacts with the various FGFs.  相似文献   

6.
Fibroblast growth factor (FGF) receptor (FGFR) gene family consists of at least four receptor tyrosine kinases that transduce signals important in a variety of developmental and physiological processes related to cell growth and differentiation. Here we have characterized the binding of different FGFs to FGFR-4. Our results establish an FGF binding profile for FGFR-4 with aFGF having the highest affinity, followed by K-FGF/hst-1 and bFGF. In addition, FGF-6 was found to bind to FGFR-4 in ligand competition experiments. Interestingly, the FGFR-4 gene was found to encode only the prototype receptor in a region where both FGFR-1 and FGFR-2 show alternative splicing leading to differences in their ligand binding specificities and to secreted forms of these receptors. Ligands binding to FGFR-4 induced receptor autophosphorylation and phosphorylation of a set of cellular polypeptides, which differed from those phosphorylated in FGFR-1-expressing cells. Specifically, the FGFR-1-expressing cells showed a considerably more extensive tyrosine phosphorylation of PLC-gamma than the FGFR-4-expressing cells. Structural and functional specificity within the FGFR family exemplified by FGFR-4 may help to explain how FGFs perform their diverse functions.  相似文献   

7.
The 22 members of the FGF family have been implicated in cell proliferation, differentiation, survival, and migration. They are required for both development and maintenance of vertebrates, demonstrating an exquisite pattern of affinities for both protein and proteoglycan receptors. FGF19, one of the most divergent human FGFs, is unique in binding solely to one receptor, FGFR4. We have used molecular replacement to solve the crystal structure of FGF19 at 1.3 A resolution using five superimposed FGF structures as the search model. The structure shows that two novel disulfide bonds found in FGF19, one of which appears to be conserved among several of the other FGFs, stabilize extended loops. The key heparin-binding loops of FGF19 have radically different conformations and charge patterns, compared to other FGFs, correlating with the unusually low affinity of FGF19 for heparin. A model for the complex of FGF19 with FGFR4 demonstrates that unique sequences in both FGF19 and FGFR4 are key to the formation of the complex. The structure therefore offers a clear explanation for the unusual affinity of FGF19 for FGFR4 alone.  相似文献   

8.
Epithelial cells, which express FGFR2IIIb, bind and respond to FGF-1, FGF-7 and FGF-10, but not FGF-2. Stromal cells, which bind and respond to FGF-1 and FGF-2, but not FGF-7 and FGF-10, express FGFR2IIIc or FGFR1IIIc. Here we show that when both isolated FGFR2betaIIIb and FGFR2betaIIIc or their common Ig module II are allowed to affinity select heparin from a mixture, the resultant binary complexes bound FGF-1, FGF-2, and FGF-7 with nearly equal affinity. In addition, FGF-2 and FGF-7 bound to both heparin-Ig module IIIb and IIIc complexes, but FGF-1 bound to neither Ig module III. The results show that in isolation both Ig modules II and III of FGFR2 can interact with heparin and that each exhibits a binding site for FGF. We suggest that the specificity of FGFR2IIIb and FGFR2IIIc is dependent on the cell membrane environment and heparin/heparan sulfate. Ig modules II and III cooperate both within monomers and across dimers with cellular heparan sulfates to confer cell type-dependent specificity of the FGFR complex for FGF.  相似文献   

9.
10.
The keratinocyte growth factor (KGF or FGF-7) is unique among its family members both in its target cell specificity and its inhibition by the addition of heparin and the native heparan-sulfate proteoglycan (HSPG), glypican-1 in cells expressing endogenous HSPGs. FGF-1, which binds the FGF-7 receptor with a similar affinity as FGF-7, is stimulated by both molecules. In the present study, we investigated the modulation of FGF-7 activities by heparin and glypican-1 in HS-free background utilizing either HS-deficient cells expressing the FGF-7 receptor (designated BaF/KGFR cells) or soluble extracellular domain of the receptor. At physiological concentrations of FGF-7, heparin was required for high affinity receptor binding and for signaling in BaF/KGFR cells. In contrast, binding of FGF-7 to the soluble form of the receptor did not require heparin. However, high concentrations of heparin inhibited the binding of FGF-7 to both the cell surface and the soluble receptor, similar to the reported effect of heparin in cells expressing endogenous HSPGs. The difference in heparin dependence for high affinity interaction between the cell surface and soluble receptor may be due to other molecule(s) present on cell surfaces. Glypican-1 differed from heparin in that it stimulated FGF-1 but not FGF-7 activities in BaF/KGFR cells. Glypican-1 abrogated the stimulatory effect of heparin, and heparin reversed the inhibitory effect of glypican-1, indicating that this HSPG inhibits FGF-7 activities by acting, most likely, as a competitive inhibitor of stimulatory HSPG species for FGF-7. The regulatory effect of glypican-1 is mediated at the level of interaction with the growth factor as glypican-1 did not bind the KGFR. The effect of heparin and glypican-1 on FGF-1 and FGF-7 oligomerization was studied employing high and physiological concentrations of growth factors. We did not find a correlation between the effects of these glycosaminoglycans on FGFs biological activity and oligomerization. Altogether, our findings argue against the heparin-linked dimer presentation model as key in FGFR activation, and support the notion that HSPGs primarily affect high affinity interaction of FGFs with their receptors.  相似文献   

11.
Summary Fibroblast growth factor-7 (FGF-7) and a specific splice variant of the FGF tyrosine kinase receptor family (FGFR2IIIb) constitute a paracrine signaling system from stroma to epithelium. Different effects of the manipulation of cellular heparan sulfates and heparin on activities of FGF-7 relative to FGF-1 in epithelial cells suggest that pericellular heparan sulfates may regulate the activity of FGF-7 by a different mechanism than other FGFs. In this report, we employ the heparan sulfate-binding protein, protamine sulfate, to reversibly block cellular heparan sulfates. Protamine sulfate, which does not bind significantly to FGF-7 or FGFR2IIIb, inhibited FGF-7 activities, but not those of epidermal growth factor. The inhibition was overcome by increasing the concentrations of FGF-7 or heparin. Heparin was essential for binding of FGF-7 to recombinant FGFR2IIIb expressed in insect cells or FGFR2IIIb purified away from cell products. These results suggest that, similar to other FGF polypeptides, heparan sulfate within the pericellular matrix is required for activity of FGF-7. Differences in response to heparin and alterations in the BULK heparan sulfate content of cells likely reflect FGF-specific differences in the cellular repertoire of multivalent heparan sulfate chains required for assembly and activation of the FGF signal transduction complex.  相似文献   

12.
13.
Using the cytoplasmic domain of fibroblast growth factor receptor 1 (FGFR1) as bait in a yeast two-hybrid screen, Grb14 was identified as a FGFR1 binding partner. A kinase-inactive mutant of FGFR1 failed to interact with Grb14, indicating that activation of FGFR1 is necessary for binding. Deletion of the C-tail or mutation of both C-tail tyrosine residues of FGFR1 to phenylalanine abolished binding, and deletion of the juxtamembrane domain of the receptor reduced binding, suggesting that Grb14 binds to FGFR1 at multiple sites. Co-immunoprecipitation and in vitro binding assays demonstrated that binding of Grb14 to FGFR1 in mammalian cells was dependent on receptor activation by fibroblast growth factor-2 (FGF-2). Deletion of the Src homology 2 (SH2) domain of Grb14 reduced but did not block binding to FGFR1 and eliminated dependence on receptor activation. The SH2 domain alone bound both FGFR1 and platelet-derived growth factor receptor, whereas full-length Grb14 bound only FGFR1, suggesting that regions upstream of the SH2 domain confer specificity for FGFR1. Grb14 was phosphorylated on serine and threonine residues in unstimulated cells, and treatment with FGF-2 enhanced this phosphorylation. Expression of exogenous Grb14 inhibited FGF-2-induced cell proliferation, whereas a point-mutated form of Grb14 incapable of binding to FGFR1 enhanced FGF-2-induced mitogenesis. These data demonstrate an interaction between activated FGFR1 and Grb14 and suggest a role for Grb14 in FGF signaling.  相似文献   

14.
Binding of fibroblast growth factors (FGFs) to receptor tyrosine kinases (FGFRs) and signaling is facilitated by binding of FGF to heparan sulfate proteoglycans (HSPGs). There are multiple families of HSPGs, including extracellular and cell surface forms. An important and potentially controversial question is whether cell surface forms of HSPGs act as positive or negative regulators of FGF signaling. This study examines the ability of the cell surface HSPG syndecan-1 to regulate FGF binding and signaling. HSPG-deficient Raji lymphoma cells, expressing a transfected syndecan-1 cDNA (Raji S1 cells), were used as HSPG “donor” cells. BaF3 cells, expressing an FGFR1 cDNA (FR1C-11 cells), were used as FGFR “reporter” cells. Using Raji S1 cells preincubated with FGF, it was found that they formed heterotypic aggregates with FR1C-11 cells in the presence of FGF-2, but not FGF-1. In addition, the FR1C-11 cells demonstrated FGF-2, but not FGF-1, dependent survival when cultured on fixed Raji S1 cells. Thus, Raji syndecan-1 (1) differentially regulates the binding and signaling of FGFs 1 and 2 and (2) acts as a positive regulator of FGF-2 signaling. J. Cell. Physiol. 174:310–321, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Fibroblast growth factors and their receptors in the central nervous system   总被引:22,自引:0,他引:22  
Fibroblast growth factors (FGFs) and their receptors constitute an elaborate signaling system that participates in many developmental and repair processes of virtually all mammalian tissues. Among the 23 FGF members, ten have been identified in the brain. Four FGF receptors (FGFRs), receptor tyrosine kinases, are known so far. Ligand binding of these receptors greatly depends on the presence of heparan sulfate proteoglycans, which act as low affinity FGFRs. Ligand binding specificity of FGFRs depends on the third extracellular Ig-like domain, which is subject to alternative splicing. Activation of FGFRs triggers several intracellular signaling cascades. These include phosphorylation of src and PLC leading finally to activation of PKC, as well as activation of Crk and Shc. SNT/FRS2 serves as an alternative link of FGFRs to the activation of PKC and, in addition, activates the Ras signaling cascade. In the CNS, FGFs are widely expressed; FGF-2 is predominantly synthesized by astrocytes, whereas other FGF family members, e.g., FGF-5, FGF-8, and FGF-9, are primarily synthesized by neurons. During CNS development FGFs play important roles in neurogenesis, axon growth, and differentiation. In addition, FGFs are major determinants of neuronal survival both during development and during adulthood. Adult neurogenesis depends greatly on FGF-2. Finally, FGF-1 and FGF-2 seem to be involved in the regulation of synaptic plasticity and processes attributed to learning and memory.  相似文献   

16.
The regulation of cell function by fibroblast growth factors (FGF) occurs through a dual receptor system consisting of a receptor-tyrosine kinase, FGFR and the glycosaminoglycan heparan sulfate (HS). Mutations of some potential N-glycosylation sites in human fgfr lead to phenotypes characteristic of receptor overactivation. To establish how N-glycosylation may affect FGFR function, soluble- and membrane-bound recombinant receptors corresponding to the extracellular ligand binding domain of FGFR1-IIIc were produced in Chinese Hamster Ovary cells. Both forms of FGFR1-IIIc were observed to be heavily N-glycosylated and migrated on SDS-PAGE as a series of multiple bands between 50 and 75 kDa, whereas the deglycosylated receptors migrated at 32 kDa, corresponding to the expected molecular weight of the polypeptides. Optical biosensor and quartz crystal microbalance-dissipation binding assays show that the removal of the N-glycans from FGFR1-IIIc caused an increase in the binding of the receptor to FGF-2 and to heparin-derived oligosaccharides, a proxy for cellular HS. This effect is mediated by N-glycosylation reducing the association rate constant of the receptor for FGF-2 and heparin oligosaccharides. N-Glycans were analyzed by mass spectrometry, which demonstrates a predominance of bi- and tri-antennary core-fucosylated complex type structures carrying one, two, and/or three sialic acids. Modeling of such glycan structures on the receptor protein suggests that at least some may be strategically positioned to interfere with interactions of the receptor with FGF ligand and/or the HS co-receptor. Thus, the N-glycans of the receptor represent an additional pathway for the regulation of the activity of FGFs.  相似文献   

17.
18.
Fibroblast growth factors (FGFs) transmit their signals through four transmembrane receptors that are designated FGFR1-4. Alternative splicing in the extracellular region of FGFR1-3 generates receptor variants with different ligand binding affinities. Thus two types of transmembrane receptors (IIIb and IIIc isoforms) have been identified for FGFR2 and FGFR3, and the existence of analogous variants has been postulated for FGFR1 based on its genomic structure. However, only a single full-length transmembrane FGFR1 variant (FGFR1-IIIc) has been identified so far. Here we describe the cloning of a full-length cDNA encoding FGFR1-IIIb from a mouse skin wound cDNA library. This receptor isoform was expressed at the highest levels in a subset of sebaceous glands of the skin and in neurons of the hippocampus and the cerebellum. FGFR1-IIIb was expressed in L6 rat skeletal muscle myoblasts and used in cross-linking and receptor binding studies. FGF-1 was found to bind the receptor with high affinity, whereas FGF-2, -10, and -7 bound with significantly lower affinities. Despite their apparently similar but low affinities, FGF-10 but not FGF-7 induced the activation of p44/42 mitogen-activated protein kinase in FGFR1-IIIb-expressing L6 myoblasts and stimulated mitogenesis in these cells, demonstrating that this new receptor variant is a functional transmembrane receptor for FGF-10.  相似文献   

19.
A divalent cation-dependent association between heparin or heparan sulfate and the ectodomain of the FGF receptor kinase (FGFR) restricts FGF-independent trans-phosphorylation and supports the binding of activating FGF to self-associated FGFR. Here we show that in contrast to heparin, cellular heparan sulfate forms a binary complex with FGFR that discriminates between FGF-1 and FGF-2. FGFR type 4 (FGFR4) in liver parenchymal cells binds only FGF-1, whereas FGFR1 binds FGF-1 and FGF-2 equally. Cell-free complexes of heparin and recombinant FGFR4 bound FGF-1 and FGF-2 equally. However, in contrast to FGFR1, when recombinant FGFR4 was expressed back in epithelial cells by transfection, it failed to bind FGF-2 unless heparan sulfate was depressed by chlorate or heparinase treatment. Isolated heparan sulfate proteoglycan (HSPG) from liver cells in cell-free complexes with FGFR4 restored the specificity for FGF-1 and supported the binding of both FGF-1 and FGF-2 when complexed with FGFR1. In contrast, FGF-2 bound equally well to complexes of both FGFR1 and FGFR4 formed with endothelial cell-derived HSPG, but the endothelial HSPG was deficient for the binding of FGF-1 to both FGFR complexes. These data suggest that a heparan sulfate subunit is a cell type- and FGFR-specific determinant of the selectivity of the FGFR signaling complex for FGF. In a physiological context, the heparan sulfate subunit may limit the redundancy among the current 18 FGF polypeptides for the 4 known FGFR.  相似文献   

20.
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. KGF exhibits potent mitogenic activity for a variety of epithelial cell types but is distinct from other known FGFs in that it is not mitogenic for fibroblasts or endothelial cells. We report saturable specific binding of 125I-KGF to surface receptors on intact Balb/MK mouse epidermal keratinocytes. 125I-KGF binding was completed efficiently by acidic FGF (aFGF) but with 20-fold lower efficiency by basic FGF (bFGF). The pattern of 125I-acidic FGF binding and competition on Balb/MK keratinocytes and NIH/3T3 fibroblasts suggests that these cell types possess related but distinct FGF receptors. Scatchard analysis of 125I-KGF binding suggested major and minor high affinity receptor components (KD = 400 and 25 pM, respectively) as well as a third high capacity/low affinity heparin-like component. Covalent affinity cross-linking of 125I-KGF to its receptor on Balb/MK cells revealed two species of 115 and 140 kDa. KGF also stimulated the rapid tyrosine phosphorylation of a 90-kDa protein in Balb/MK cells but not in NIH/3T3 fibroblasts. Together these results indicate that Balb/MK keratinocytes possess high affinity KGF receptors to which the FGFs may also bind. However, these receptors are distinct from the receptor(s) for aFGF and bFGF on NIH/3T3 fibroblasts, which fail to interact with KGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号