首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
D-(-)-2-(6'-hydroxy-7'-[(123)I]iodobenzothiazolyl)-delta(2)-thiazoline-4-caroxylic acid (7'-[(123)I]iodo-D-luciferin) was synthesized as a novel reporter probe for in vivo studies of firefly luciferase gene expression. 7'-Iodo-D-luciferin, a nonradioactive standard, was synthesized and showed the binding property (K(M)=4.28 microM) similar to that of D-luciferin (2.53 microM) for firefly luciferase in luminescence assay.  相似文献   

2.
Sugar conjugation of biooactive peptides has been shown to be a powerful tool to modulate peptide pharmacokinetics. In the case of radiolabeled somatostatin analogues developed for in vivo scintigraphy of somatostatin receptor (sst) expressing tumors, it generally led to tracers with predominant renal excretion and low uptake in nontarget organs, and in some cases also with enhanced tumor accumulation. Especially with respect to endoradiotherapeutic applicability of these tracers, however, understanding the structural requirements for minimal kidney accumulation and maximal tumor uptake is important. The aim of this study was therefore the evaluation of the potential of specific glycoside structures in combination with reduced peptide net charge to reduce kidney accumulation without affecting tumor accumulation. Three glyco analogues of radioiodinated Tyr(3)-octreotate (TOCA) with z = 0 were evaluated in a comparative study using [(125)I]Mtr-TOCA (z = +1), the maltotriose-Amadori analogue of [(125)I]TOCA, as a reference, [(125)I]Glucuron-TOCA, the Amadori conjugate with glucuronic acid, and [(125)I]Gluc-S- and [(125)I]Gal-S-TOCA, the coupling products with glucosyl- and mannosyl-mercaptopropionate. In cells transfected with sst(1)-sst(5), all three new analogues show sst-subtype binding profiles similar to I-Mtr-TOCA with high, but somewhat reduced, affinity for sst(2). In contrast, internalization into sst(2)-expressing cells (in % of [(125)I]Tyr(3)-octreotide ([(125)I]TOC)) as well as the EC(50,R) of unlabeled TOC for internalization determined in dual-tracer experiments are substantially enhanced for [(123)I]Gal-S-TOCA and [(123)I]Gluc-S-TOCA (internalization, 190% +/- 12% and 265% +/- 20%, respectively, vs 168% +/- 6% of [(125)I]TOC for [(123)I]Mtr-TOCA; EC(50,R), 2.62 +/- 0.07 and 2.96 +/- 0.14, respectively, vs 1.81 +/- 0.07 for [(123)I]Mtr-TOCA). The tumor accumulation of [(125)I]Gal-S-TOCA and [(125)I]Gluc-S-TOCA in AR42J tumor-bearing nude mice 1 h p.i. is consequently very high (22.6 +/- 2.2 and 26.2 +/- 5.6%ID/g) and comparable to that of [(125)I]Mtr-TOCA (25.1 +/- 4.4%ID/g). [(125)I]Glucuron-TOCA showed lower uptake in sst-expressing tissues than did [(125)I]Mtr-TOCA, but considerably enhanced accumulation in nontarget organs such as liver, intestine, and kidney. Due to increased lipophilicity, hepatic and intestinal uptake 1 and 4 h p.i. of [(125)I]Gal-S-TOCA and [(125)I]Gluc-S-TOCA was also slightly higher than that of [(125)I]Mtr-TOCA. Kidney accumulation, however, was reduced by approximately 50% for both compounds (2.6 +/- 0.3 and 2.2 +/- 0.4, respectively, vs 4.0 +/- 0.7%ID/g at 1 h p.i.). Because no sugar-specific effect was detected in the latter case, it is concluded that general ligand pharmacokinetics and especially kidney accumulation of the tracers investigated are mainly determined by physicochemical characteristics such as lipophilicity, net charge, and also charge distribution ([(125)I]Glucuron-TOCA vs [(125)I]Gal-S- and [(125)I]Gluc-S-TOCA). With respect to receptor targeting, however, the structure of the carbohydrate moiety plays an important role, leading to dramatically enhanced ligand internalization, especially in the case of [(123)I]Gluc-S-TOCA. Taking into account the combined effects of the Gluc-S-moiety both on kidney and on tumor accumulation, this group seems to be a promising synthon for the synthesis of other radiolabeled peptide analogues with improved pharmacokinetics.  相似文献   

3.
syn- and anti-1-amino-3-[2-iodoethenyl]-cyclobutane-1-carboxylic acid (syn-, anti-IVACBC 16, 17) and their analogue 1-amino-3-iodomethylene-cyclobutane-1-carboxylic acid (gem-IVACBC 18) were synthesized and radioiodoinated with [(123)I] in 34-43% delay-corrected yield. All these amino acids entered 9L gliosarcoma cells primarily via L-type transport in vitro with high uptake of 8-10% ID/1 x 10(6) cells. Biodistribution studies of [(123)I]16, 17 and 18 in rats with 9L gliosarcoma brain tumors demonstrated high tumor to brain ratios (4.7-7.3:1 at 60 min post-injection). In this model, syn-, anti-, and gem-[(123)I]IVACBC are promising radiotracers for SPECT brain tumor imaging.  相似文献   

4.
In vitro binding of the iodinated imidazopyridine, N',N'-dimethyl-6-methyl-(4'-[(123)I]iodophenyl)imidazo[1,2-a]pyridine-3-acetamide [(123)I]IZOL to benzodiazepine binding sites on brain cortex, adrenal and kidney membranes is reported. Saturation experiments showed that [(123)I]IZOL, bound to a single class of binding site (n(H)=0.99) on adrenal and kidney mitochondrial membranes with a moderate affinity (K(d)=30 nM). The density of binding sites was 22+/-6 and 1.2+/-0.4 pmol/mg protein on adrenal and kidney membranes, respectively. No specific binding was observed in mitochondrial-synaptosomal membranes of brain cortex. In biodistribution studies in rats, the highest uptake of [(123)I]IZOL was found 30 min post injection in adrenals (7.5% ID/g), followed by heart, kidney, lung (1% ID/g) and brain (0.12% ID/g), consistent with the distribution of peripheral benzodiazepine binding sites. Pre-administration of unlabelled IZOL and the specific PBBS drugs, PK 11195 and Ro 5-4864 significantly reduced the uptake of [(123)I]IZOL by 30% (p<0.05) in olfactory bulbs and by 51-86% (p<0.01) in kidney, lungs, heart and adrenals, while it increased by 30% to 50% (p<0.01) in the rest of the brain and the blood. Diazepam, a mixed CBR-PBBS drug, inhibited the uptake in kidney, lungs, heart, adrenals and olfactory bulbs by 32% to 44% (p<0.01) but with no effect on brain uptake and in blood concentration. Flumazenil, a central benzodiazepine drug and haloperidol (dopamine antagonist/sigma receptor drug) displayed no effect in [(123)I]IZOL in peripheral organs and in the brain. [(123)I]IZOL may deserve further development for imaging selectively peripheral benzodiazepine binding sites.  相似文献   

5.
1. Influx and efflux of l-tri-[(125)I]iodothyronine with isolated rat liver parenchymal cells and their plasma-membrane vesicles were studied by a rapid centrifugation technique. 2. At 23 degrees C and in the concentration range that included the concentration of free l-tri-iodothyronine in rat plasma (3-5pm) influx into cells was saturable; an apparent K(t) value of 8.6+/-1.6pm was obtained. 3. At 5pm-l-tri-[(125)I]iodothyronine in the external medium the ratios of the concentrations inside to outside in cells and plasma-membrane vesicles were 38:1 and 366:1 respectively after 7s of incubation. At equilibrium (60s at 23 degrees C) uptake of l-tri-[(125)I]iodothyronine by cells was linear with the hormone concentration, whereas that by plasma-membrane vesicles exhibited an apparent saturation with a K(d) value of 6.1+/-1.3pm. 4. Efflux of l-tri-[(125)I]iodothyronine from cells equilibrated with the hormone (5-123pm) was constant up to 21 s; the amount that flowed out was 17.7+/-3.8% when cells were equilibrated with 5pm-hormone. When plasma-membrane vesicles were equilibrated with l-tri-[(125)I]iodothyronine (556-1226pm) 66.8+/-5.8% flowed out after 21 s. 5. From a consideration of the data on efflux from cells and binding of l-tri-[(125)I]iodothyronine to the liver homogenate, as studied by the charcoal-adsorption and equilibrium-dialysis methods, it appears that 18-22% of the hormone exists in the free form in the cell. 6. Vinblastine and colchicine diminished the uptake of l-tri-[(125)I]iodothyronine by cells but not by plasma-membrane vesicles; binding to the cytosol fraction was not affected. Phenylbutazone, 6-n-propyl-2-thiouracil, methimazole and corticosterone diminished the uptake by cells, plasma-membrane vesicles and binding to the cytosol fraction to different extents. 7. These results suggest that at low concentrations of l-tri-[(125)I]iodothyronine rat liver cells and their plasma-membrane vesicles accumulated the hormone against an apparent gradient by a membrane-mediated process. Contribution of cytoplasmic proteins to uptake by plasma-membrane vesicles was negligible. The amount of l-tri-[(125)I]iodothyronine required to achieve half-maximal uptake agrees with that occurring in the free form in the blood, conferring physiological importance to the transporting system in the plasma membrane of the liver cell.  相似文献   

6.
A number of ring- and side-chain-substituted m-iodobenzylguanidine analogues were evaluated for their lipophilicity, in vitro stability, uptake by SK-N-SH human neuroblastoma cells in vitro, and biodistribution in normal mice. As expected, the lipophilicity of m-iodobenzylguanidine increased when a halogen was introduced onto the ring and decreased with the addition of polar hydroxyl, amino, and nitro substitutents. Most of the derivatives showed reasonable stability up to 24 h in PBS at 37 degrees C. While N(1)-hydroxy-N(3)-3-[(131)I]iodobenzylguanidine and 3,4-dihydroxy-5-[(131)I]iodobenzylguanidine generated a more nonpolar product in addition to the free iodide, 3-[(131)I]iodo-4-nitrobenzylguanidine decomposed to a product more polar than the parent compound. The specific uptake of 4-chloro-3-[(131)I]iodobenzylguanidine, 3-[(131)I]iodo-4-nitrobenzylguanidine, and N(1)-hydroxy-N(3)-3-[(131)I]iodobenzylguanidine by SK-N-SH human neuroblastoma cells in vitro, relative to that of m-[(125)I]iodobenzylguanidine, was 117 +/- 10%, 50 +/- 4%, and 12 +/- 2%, respectively. The specific uptake of the known m-iodobenzylguanidine analogues 4-hydroxy-3-[(131)I]iodobenzylguanidine and 4-amino-3-[(131)I]iodobenzylguanidine was 80 +/- 4% and 66 +/- 4%, respectively. None of the other m-iodobenzylguanidine derivatives showed any significant specific uptake by SK-N-SH cells. Heart uptake of 4-chloro-3-[(131)I]iodobenzylguanidine in normal mice was higher than that of m-[(125)I]iodobenzylguanidine at later time points (11 +/- 1% ID/g versus 3 +/- 1% ID/g at 24 h; p < 0.05) while uptake of 3-[(131)I]iodo-4-nitrobenzylguanidine and of N(1)-hydroxy-N(3)-3-[(131)I]iodobenzylguanidine in the heart was lower than that of m-iodobenzylguanidine at all time points. In accordance with the in vitro results, none of the other novel m-iodobenzylguanidine derivatives showed any significant myocardial or adrenal uptake in vivo.  相似文献   

7.
Radioiodinated meta-iodobenzylguanidine (MIBG) is used in the diagnosis and therapy of various neuroendocrine tumors. To investigate whether an additional guanidine function in the structure of MIBG will yield analogues that may potentially enhance tumor-to-target ratios, two derivatives-one with a guanidine moiety and another with a guanidinomethyl group at the 4-position of MIBG-were prepared. In the absence of any uptake-1 inhibiting conditions, the uptake of 4-guanidinomethyl-3-[(131)I]iodobenzylguanidine ([(131)I]GMIBG) by SK-N-SH cells in vitro was 1.7+/-0.1% of input counts, compared to a value of 40.3+/-1.4% for [(125)I[MIBG suggesting that guanidinomethyl group at the 4-position negated the biological properties of MIBG. On the other hand, 4-guanidino-3-[(131)I]iodobenzylguanidine ([(131)I]GIBG) had an uptake (5.6+/-0.3%) that was 12-13% that of [(125)I]MIBG (46.1+/-2.7%), and the ratio of uptake by control over DMI-treated (nonspecific) cultures was higher for [(131)I]GIBG (20.9+/-0.3) than [(125)I]MIBG itself (15.0+/-2.7). The exocytosis of [(131)I]GIBG and [(125)I]MIBG from SK-N-SH cells was similar. The uptake of [(131)I]GIBG in the mouse target tissues, heart and adrenals, as well as in a number of other tissues was about half that of [(125)I]MIBG. These results suggest that substitution of guanidine functions, especially a guanidinomethyl group, in MIBG structure may not be advantageous.  相似文献   

8.
Endothelin-1 (ET-1)[1-31] is a novel hypertensive peptide that mimics many of the vascular effects of the classic 21 amino acid peptide ET-1[1-21]. However, at variance with ET-1[1-21] that enhances aldosterone secretion from cultured rat zona glomerulosa (ZG) cells by acting via ETB receptors, ET-1[1-31] did not elicit such effect. Both ET-1[1-21] and ET-1[1-31] raised the proliferation rate of cultured ZG cells, the maximal effective concentration being 10(-8) M. This effect was blocked by the ETA-receptor antagonist BQ-123 and unaffected by the ETB-receptor antagonist BQ-788. Quantitative autoradiography showed that ET-1[1-21] displaced both [(125)I]PD-151242 binding to ETA receptors and [(125)I]BQ-3020 binding to ETB receptors in both rat ZG and adrenal medulla, while ET-1[1-31] displaced only [(125)I]BQ-3020 binding. The tyrosine kinase (TK) inhibitor tyrphostin-23 and the p42/p44 mitogen-activated protein kinase (MAPK) inhibitor PD-98059 abolished the proliferogenic effect of ET-1[1-31], while the protein kinase-C (PKC) inhibitor calphostin-C significantly reduced it. ET-1[1-31] (10(-8) M) stimulated TK and MAPK activity of dispersed ZG cells, an effect that was blocked by BQ-123. The stimulatory action of ET-1[1-31] on TK activity was annulled by tyrphostin-23, while that on MAPK activity was reduced by calphostin-C and abolished by either tyrphostin-23 and PD-98059. These data suggest that ET-1[1-31] is a selective agonist of the ETA-receptor subtype, and enhances proliferation of cultured rat ZG cells through the PKC- and TK-dependent activation of p42/p44 MAPK cascade.  相似文献   

9.
The Auger electron emitter 123I was examined in the form of 4-[123I]iodoantipyrine and as [123I]NaI for its effectiveness in killing cells of different sensitivity to photon irradiation. Micronucleus assays showed that 4-[123I]iodoantipyrine is 2–3 times more effective in cell inactivation than [123I]NaI. This can be attributed to the fact that antipyrine, for reason of its lipid solubility, can enter cells and can reach the nucleus, whereas [123I]NaI is excluded from the cytoplasm. In the nucleus Auger decay is conceivably located on the DNA where it may invoke high-LET irradiation damage. Irradiation damage by [123I]NaI is by long range Auger and internal conversion electrons and hence less densely ionising. Results of the present study demonstrate, however, that the enhancement of micronuclei frequency (MNF) seen with 4-[123I]iodoantipyrine as compared to [123I]NaI is similar for all cell lines and that the ratio of 4-[123I]iodoantipyrine/[123I]NaI MN response remains the same. Experiments with the free radical scavenger DMSO, indicated nearly identical dose reduction factors for both 123I carriers. These two observations strongly suggest that the cell inactivation by 4-[123I]iodoantipyrine is not by direct high-LET ionisation of DNA, but is due to an indirect effect. The indirect radiation effect of Auger decay in the nucleus could arise because 4-[123I]iodoantipyrine is not incorporated into the DNA, but is only associated with chromatin where the DNA is shielded by histones. Received: 24 May 2000 / Accepted: 1 November 2000  相似文献   

10.
Our group is developing a novel technology, enzyme-mediated cancer imaging and therapy (EMCIT), that aims to entrap radioiodinated compounds within solid tumors for noninvasive tumor detection and therapy. In this approach, a water-soluble, radioiodinated prodrug is hydrolyzed in vivo to a highly water-insoluble compound by an enzyme overexpressed extracellularly by tumor cells. We have synthesized and characterized the water-soluble prodrug, 2-(2'-phosphoryloxyphenyl)-6-[(125)I]iodo-4-(3H)-quinazolinone [(125)I]5, which is readily hydrolyzed by alkaline phosphatase, an enzyme expressed by many tumor cell lines, to a water-insoluble drug, 2-(2'-hydroxyphenyl)-6-[(125)I]iodo-4-(3H)-quinazolinone [(125)I]1. In the course of our study, we discovered that ammonium 2-(2'-phosphoryloxyphenyl)-6-tributylstannyl-4-(3H)-quinazolinone, an intermediate in the radioiodination of the prodrug, exists as two isomers (3 and 4) whose radioiodination leads, respectively, to [(125)I]6 and [(125)I]5. These prodrugs have different in vitro and in vivo biologic activities. Compound 6 is not hydrolyzed by alkaline phosphatase (ALP), whereas 5 is highly soluble (mg/mL) in aqueous solution and is rapidly dephosphorylated in the presence of ALP to 1, a water-insoluble molecule (ng/mL). Mouse biodistribution studies indicate that [(125)I]6 has high uptake in kidney and liver and [(125)I]5 has very low uptake in all normal organs. Compounds 3 and 6 are converted, respectively, to 4 and 5 after incubation in DMSO. The stability of 5 in human serum is high. The minimum ALP concentration needed to hydrolyze 5 is much greater than the ALP level in the blood of patients with cancer, and the latter should not affect the pharmacokinetics of the compound. Incubation of 5 with viable human and mouse tumor-cell lines--but not with normal human cells and mouse tissues--leads to its hydrolysis and the formation of large crystals of 1. We expect that 5 will also be hydrolyzed in vivo by tumor cells that express phosphatase activity extracellularly and anticipate the specific precipitation of radioiodinated 1 within tumor cell clusters. This should lead to high tumor-to-normal-tissue ratios and enable imaging (SPECT/PET) and radionuclide therapy of solid tumors.  相似文献   

11.
An important criterion in design of acylation agents for the radioiodination of internalizing monoclonal antibodies (mAbs) is to maximize the retention of radioiodine in the tumor following mAb intracellular processing. We have previously shown that labeling methods that generate positively charged catabolites have enhanced tumor retention. Herein we have extended this strategy to investigate the potential utility of labeling internalizing mAbs with an acylation agent that yielded labeled catabolites that would be negatively charged at lysosomal pH. The negatively charged acylation agent, N-succinimidyl 3-[(131)I]iodo-4-phosphonomethylbenzoate ([(131)I]SIPMB), was prepared from its tin precursor, N-succinimidyl 4-di-tert-butylphosphonomethyl-3-trimethylstannylbenzoate (tBu-SPMTB), in 40% radiochemical yield. The free acid, 3-[(131)I]iodo-4-phosphonomethylbenzoic acid ([(131)I]IPMBA), was also prepared from the corresponding precursor, 4-di-tert-butylphosphonomethyl-3-trimethylstannylbenzoic acid (tBu-PMTBA), in 80% radiochemical yield. The rapidly internalizing mAb L8A4 was conjugated to [(131)I]SIPMB in 25-40% yield with preservation of its immunoreactivity. Internalization and processing in the U87DeltaEGFR glioma cell line was studied in a paired label format with L8A4 labeled with (125)I using the Iodogen method. Retention of initially bound radioactivity in these cells at 24 h from [(131)I]SIPMB-labeled mAb was approximately 6-fold higher than that for directly labeled mAb. Catabolite analysis demonstrated that this difference reflected an order of magnitude higher retention of low molecular weight species in these cells. The [(131)I]SIPMB-L8A4 conjugate was intact over the first 2 h; thereafter, lysine-[(131)I]SIPMB was the predominant catabolite. In contrast, L8A4 labeled using Iodogen rapidly gave rise to mono-[(125)I]iodotyrosine within 2 h, which then cleared rapidly from the cells. These results suggest that SIPMB could be a potent candidate for labeling internalizing mAbs and warrant further study.  相似文献   

12.
3-Hydroxy-2-nitrophenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside, a derivative of the chromogenic beta-galactosidase (beta-gal) substrate o-nitrophenyl beta-D-galactopyranoside (ONPG) was synthesized using a Koenigs-Knorr glycosylation reaction. It was alkylated with 2-[(18)F]fluoroethyl triflate or [(11)C]methyl triflate, followed by deacetylation of the sugar hydroxyl groups to obtain radiolabeled 3-(2'-[(18)F]fluoroethoxy)-2-nitrophenyl beta-D-galactopyranoside ([(18)F]-2c) and 3-[(11)C]methoxy-2-nitrophenyl beta- d-galactopyranoside ([(11)C]-3c), which were evaluated as potential reporter probes for in vivo visualization of LacZ gene expression with positron emission tomography (PET). In vitro, [(18)F]- 2c and [(11)C]-3c were good substrates of beta-gal and showed, respectively, a 7.5- and 2.5-fold higher uptake into beta-gal expressing cells (LacZ cells) compared to control cells. However, reversed-phase HPLC analysis of the LacZ cell lysate and supernatant showed that labeled 3-(2'-[(18)F]fluoroethoxy)-2-nitrophenol, the hydrolysis product formed by beta-gal-mediated cleavage of [(18)F]-2c, substantially leaked out of the cells, which would lead to loss of PET signal. In a microPET study of [(18)F]-2c in a mouse with a beta-gal expressing tumor, high retention was observed in liver and kidneys, but only negligible accumulation was seen in the tumor. As a general conclusion, it can be stated that the synthesized PET tracers [ (18)F]-2c and [(11)C]-3c are not suitable for use as LacZ reporter probes. Further structural modifications to improve the diffusion over the tumor cell membrane and to increase retention in beta-gal expressing cells may lead to more favorable in vivo imaging probes.  相似文献   

13.
3-[(123)I]Iodo-L-alpha-methyl tyrosine ((123)I-IMT) is used for diagnosis and monitoring of brain tumours by means of single-photon emission tomography. As recently shown, (123)I-IMT is predominantly mediated into rat C6 glioma cells by sodium-independent system L for large neutral amino acids. Until now, (123)I-IMT transport in non-neoplastic glial cells has not been examined. Therefore, the aim of this study was to examine the cellular pathways and precise transport kinetics of (123)I-IMT uptake into astrocytes of neonatal rats. In particular sodium-independent (123)I-IMT transport into neonatal astrocytes was compared with sodium-independent (123)I-IMT uptake into neoplastic rat C6 glioma cells. Competitive inhibition experiments showed that (123)I-IMT is exclusively transported via sodium-independent system L into the neonatal astrocytes (92%). Kinetic analysis of sodium-independent (123)I-IMT uptake into neonatal astrocytes and into C6 glioma cells revealed apparent Michaelis constants K(M) = 13.9 +/- 0.5 microM and K(M) = 33.9 +/- 4.1 microM, respectively, which are in the same range of K(M) values as those recently determined for amino acid transport into neoplastic and non-neoplastic glial cells. Indeed, the K(M) values in the micromolar range correspond to the expression of the LAT-1 subunit of system L both in the neonatal astrocytes and in C6 glioma cells. However, sodium-independent maximum transport velocities (V(max)) differed significantly between neonatal astrocytes and C6 glioma cells (11.1 +/- 0.3 and 39.9 +/- 3.3 nmol/mg protein/10 min, respectively).  相似文献   

14.
With the goal of developing MIBG analogues with improved targeting properties especially for oncologic applications, several radioiodinated ring- and side-chain-substituted MIBG analogues were synthesized. Except for 3-[(131)I]iodo-4-nitrobenzylguanidine and N-hydroxy-3-[(131)I]iodobenzylguanidine, the radioiodinated analogues were prepared at no-carrier-added levels from their respective tin precursors. The radiochemical yields generally were in the range of 70-90% except for 3-amino-5-[(131)I]iodobenzylguanidine for which a radiochemical yield of about 40% was obtained. While the silicon precursor N(1),N(2)-bis(tert-butyloxycarbonyl)-N(1)-(4-nitro-3-trimethylsilylbenzyl)guanidine did not yield 3-[(131)I]iodo-4-nitrobenzylguanidine, its deprotected derivative, N(1)-(4-nitro-3-trimethylsilylbenzyl)guanidine was radioiodinated in a modest yield of 20% providing 3-[(131)I]iodo-4-nitrobenzylguanidine. Exchange radioiodination of 3-iodo-4-nitrobenzylguanidine gave 3-[(131)I]iodo-4-nitrobenzylguanidine in 80% radiochemical yield. No-carrier-added [(131)I]NHIBG was prepared from its silicon precursor N(1)-hydroxy-N(3)-(3-trimethylsilylbenzyl)guanidine in 85% radiochemical yield.  相似文献   

15.
Binding experiments performed with [(125)I]-NKA allowed us to demonstrate the presence of "septide-sensitive" specific binding sites on membranes from rat CHO cells transfected with the NK(1) receptor cDNA (CHO-rat-NK1 cells), human astrocytoma U373 MG, or mouse cortical astrocytes, cells which express NK(1) but neither NK(2) nor NK(3) receptors. In all cases, [(125)I]-NKA was specifically bound with high affinity (2 to 5 nM) to a single population of sites. In the three preparations, pharmacological characteristics of [(125)I]-NKA binding sites were notably different from those of classical NK(1) binding sites selectively labelled with [(125)I]-BHSP. Indeed, the endogenous tachykinins NKA, NPK, and NKB and the septide-like compounds such as septide, SP(6-11), ALIE-124, [Apa(9-10)]SP, or [Lys(5)]NKA(4-10) had a much higher affinity for [(125)I]-NKA than [(125)I]-BHSP binding sites. Interestingly, differences were also found in the ratio of B(max) values for [(125)I]-NKA and [(125)I]-BHSP specific bindings from one tissue to another. These latter observations suggest that these two types of NK(1) binding sites are present on distinct NK(1) receptor isoforms (or conformers). Finally, while several tachykinins and tachykinin-related compounds stimulated cAMP formation or increased inositol phosphate accumulation in CHO-rat-NK1 cells, these compounds only increased the accumulation of inositol phosphates in the two other preparations.  相似文献   

16.
N-acetylglucosaminyltransferase V (GnT-V) is one of the most relevant glycosyltransferases to tumor invasion and metastasis. Based on previous findings of molecular recognition between GnT-V and synthetic substrates, we designed and synthesized a p-iodophenyl-derivatized trisaccharide, 2-(4-iodophenyl)ethyl 6-O-[2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-d-mannopyranosyl]-β-D-glucopyranoside (IPGMG, 1) and its radiolabeled form, [(125)I]IPGMG ([(125)I]1), for use in assays of GnT-V activity in vitro. The tributyltin derivative, 2-[4-(n-tributylstannyl)phenyl]ethyl 6-O-[2-O-(3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-β-D-glucopyranosyl)-3,4,6-tri-O-acetyl-α-D-mannopyranosyl]-2,3,4-tri-O-acetyl-β-D-glucopyranoside (21), was synthesized as a precursor for the preparation of [(125)I]1. The iododestannylation of 21 using hydrogen peroxide as an oxidant followed by deacetylation yielded [(125)I]1. When [(125)I]1 was incubated in GnT-V-expressing cells with a UDP-GlcNAc donor, the production of β1-6GlcNAc-bearing IPGMG (IPGGMG, 2) was confirmed by radio-HPLC. In kinetic analysis, 1 was found to be a good substrate with a K(m) of 23.7 μM and a V(max) of 159 pmol/h. μg protein. [(125)I]1 would therefore be a useful synthetic substrate for the quantitative determination of GnT-V activity.  相似文献   

17.
We have synthesized [(125)I]4'-iodoflavone to study Ah receptor (AhR)-ligand interactions by a class of AhR ligands distinct from the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). This radioligand allows the comparison of AhR-ligand interactions using a ligand that differs in AhR affinity, and yet has the same radiospecific activity as [(125)I]2-iodo-7,8-dibromodibenzo-p-dioxin. Specific binding of [(125)I]4'-iodoflavone with the AhR was detected as a single radioactive peak ( approximately 9.7 S) following density sucrose gradient analysis. Cytosolic extracts from both Hepa 1 and HeLa cells were used as the source of mouse and human AhR, respectively. A approximately 6.7 S form of radioligand-bound Ah receptor was detected in the high salt nuclear extracts of both cell lines. In HeLa cells approximately twofold more [(125)I]4'-iodoflavone-AhR 6 S complex, compared with [(125)I]2-iodo-7,8-dibromodibenzo-p-dioxin, was recovered in nuclear extracts. A comparison of the ability of 4'-iodoflavone and TCDD to cause time-dependent translocation of AhR-yellow fluorescent protein revealed that 4'-iodoflavone was more efficient at enhancing nuclear accumulation of the receptor. These results suggest that [(125)I]4'-iodoflavone is a particularly useful and easily synthesized ligand for studying the AhR.  相似文献   

18.
The development of O(6)-(3-[(125)I]iodobenzyl)-2'-deoxyguanosine ([(125)I]IBdG), the glycosylated analogue of the O(6)-3-iodobenzylguanine (IBG), as an agent for the in vivo mapping of the DNA repair protein alkylguanine-DNA alkyltransferase (AGT) is described. Synthesis of its tin precursor, O(6)-3-trimethylstannylbenzyl-2'-deoxyguanosine (TBdG) was achieved in four steps from deoxyguanosine. Radioiodination of TBdG in a single step gave [(125)I]IBdG in 70-85% isolated radiochemical yield. [(125)I]IBdG bound specifically to pure AGT with an IC(50) of 7.1 microM. From paired-label assays, [(125)I]IBdG showed a 2- to 3-fold higher cellular uptake than [(131)I]IBG in DAOY medulloblastoma, TE-671 rhabdomyosarcoma, SK-Mel-28 melanoma, and HT-29 colon carcinoma human cell lines. Uptake of both labeled compounds in these cell lines decreased with increasing concentrations of unlabeled O(6)-benzylguanine (BG) when BG was present in the medium during incubation with the labeled compounds. Compared to BG, unlabeled IBdG diminished the uptake of [(125)I]IBdG and [(131)I]IBG in DAOY cells more efficiently (IC(50)<1 microM vs >10 microM for BG). There was no significant change in cell-bound activity of [(125)I]IBdG and [(131)I]IBG when BG was removed from the incubation medium before incubating cells with the tracers, suggesting that only a very small portion of radioactivity taken up by the cells is AGT bound. This was corroborated by gel-electrophoresis performed on extracts from cells treated with varying amounts of BG and then incubated with [(125)I]IBdG in the presence of BG. No radiolabeled AGT band was discernable by phosphor-imaging, signifying low cellular AGT binding of the radiotracer. In contrast, when cell extracts were prepared from BG pre-treated cells and aliquots were incubated with [(125)I]IBdG subsequently, the intensity of radiolabeled AGT band decreased linearly as a function of BG concentration. This suggests that the low level of [(125)I]IBdG that binds to AGT does so in a concentration dependent manner. These data suggest that IBdG is transported across the cell membrane to a higher degree than IBG. However, to be a practical tracer for quantifying cellular AGT, considerable localization of such derivatives need to occur within the cell nucleus where AGT is present predominantly.  相似文献   

19.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

20.
Positron emission tomography (PET) herpes simplex virus thymidine kinase (HSV-tk) gene reporter probes 9-[(3-[(18)F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([(18)F]FHPG) and 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG) were prepared by nucleophilic substitution of the appropriate tosylated precursors with [(18)F]KF/Kryptofix 2.2.2 followed by a quick deprotection reaction and purification with a simplified dual Silica Sep-Pak solid-phase extraction (SPE) method in 15-30% radiochemical yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号