首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet-activating factor (PAF) is a phospholipid mediator of inflammation and allergy that is synthesized by several inflammatory cells including neutrophils. Addition of exogenous arachidonic acid to ionophore A23187-stimulated bovine neutrophils led to the inhibition of PAF biosynthesis assayed by incorporation of [3H]acetate into PAF and by bioassay; under the same conditions, leukotriene B4 (LTB4) formation was not decreased. The activities of the PAF metabolism enzymes indicated that the PAF synthesis inhibition by arachidonic acid is mediated via the acetyltransferase inhibition which is the last enzyme of the PAF formation. Another unsaturated fatty acid, oleic acid, exhibited the same inhibitory effect on [3H]acetate-PAF formation; however, the saturated stearic acid did not lead to any inhibition. These findings suggest that liberation of unsaturated fatty acids from membrane phospholipids, as a consequence of phospholipase A2 activation, would modulate PAF formation via inhibition of the acetyltransferase. In addition, the utilization of arachidonic acid oleic acids in activated neutrophils furnishes an easy means of blocking PAF synthesis in order to understand the role of this mediator in cellular processes.  相似文献   

2.
Formation of the 12R-lipoxygenase product, 12R-hydroperoxyeicosatetraenoic acid (12R-HPETE), has been detected previously only in human skin (Boeglin et al. (1998) Proc. Natl. Acad. Sci. USA 95, 6744). The unexpected appearance of an EST sequence (AA649213) for human 12R-lipoxygenase from germinal center B lymphocytes purified from human tonsils prompted our search for the existence of the enzyme in this novel source. Incubation of [1-14C]arachidonic acid with homogenates of human tonsillar tissue yielded mixtures of radiolabeled 12-HETE and 15-HETE. Stereochemical analysis showed varying ratios of 12S- and 12R-HETE, while 15-HETE was exclusively of the S-configuration. Using stereospecifically labeled [10S-3H]- and [10R-3H]arachidonic acid substrates we detected pro-R hydrogen abstraction at carbon 10 associated with formation of 12R-HETE. This mechanistic evidence implicates a 12R-lipoxygenase in the biosynthesis of 12R-HETE. The mRNA for the enzyme was identified in tonsils by RT-PCR and Northern analysis. The cellular distribution was established by in situ hybridization. Unexpectedly, hybridization was not observed in the lymphocytes of the germinal centers. Specific reaction was restricted to squamous epithelial cells, including the epithelium lining the tonsillar crypts. In this location the 12R-lipoxygenase might help regulate differentiation of the epithelium or participate in lymphocyte- epithelial cell interactions.  相似文献   

3.
In an attempt to learn how nonsteroidal factors modulate brain progestin and glucocorticoid receptors, the effects of saturated and unsaturated fatty acids, and phosphatidylinositol on the binding of [3H]R5020 or [3H]dexamethasone, determined by sucrose density gradient and gel filtration on LH20, were examined in the cerebral cortical cytosol from 10-day-old female rats which contain a considerable amount of progestin and glucocorticoid receptors. Unsaturated fatty acids such as oleic (C18:1), arachidonic (C20:4) and docosahexaenoic acid (C22:4) depressed the [3H]R5020 or [3H]dexamethasone binding in increasing order, but saturated fatty acids had no effect. Arachidonic and docosahexaenoic acids, which were strong inhibitors, lowered the binding dose dependently. The fatty acid inhibition on brain progestin and glucocorticoid receptors was thus a function of acid dose and degree of acid unsaturation. Interestingly, prostaglandin D2 did not show any effect. Among phospholipids tested the inhibitory effect of phosphatidylinositol on the [3H]R5020 binding was evident, but no significant effect was found with phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine or sphingomyelin. The phosphatidylinositol inhibition was dose dependent. Analysis on kinetics and Scatchard plot have revealed the noncompetitive type of inhibition by arachidonic acid and phosphatidylinositol. From these results it is suggested that the unsaturated nonestrified fatty acid, arachidonic acid, and phosphoinositides modulate the brain progestin and, possibly, glucocorticoid receptors through their binding at sites different from steroid binding sites on the respective receptor molecules.  相似文献   

4.
The effects of arachidonic acid (20:4) on phosphoinositide turnover were examined in rat pancreatic acinar cells prelabeled with myo-[3H]inositol. Arachidonic acid (50 microM) increased the accumulation of myo-[3H]inositol, but not that of [3H]inositol monophosphate, [3H]inositol bisphosphate, or [3H]inositol trisphosphate. By contrast, 10 microM carbamoylcholine increased the accumulation of all four compounds. A combination of arachidonic acid plus carbamoylcholine caused a selective and marked accumulation of myo-[3H]inositol, which was abolished by 10 mM LiCl. Arachidonic acid (10-100 microM) produced a concentration-dependent inhibition of myo-[3H]inositol incorporation into phosphoinositides and markedly depressed carbamoylcholine-induced increases in myo-[3H]inositol incorporation into inositol phospholipids. Several other unsaturated and saturated fatty acids failed to elicit a synergistic response with carbamoylcholine in stimulating myo-[3H]inositol accumulation and did not retard the incorporation of myo-[3H]inositol into phosphoinositides. The fact that eicosapentaenoic acid (20:5), but not arachidic acid (20:0), mimicked the depressant effect of arachidonate on phosphoinositide labeling suggests that the degree of unsaturation of the fatty acid, rather than chain length, is important for inhibition of phosphoinositide synthesis. The arachidonate-induced decrease in myo-[3H]inositol incorporation was accompanied by a reduction in the steady state level of [32P]phosphatidylinositol 4,5-bisphosphate. The mass of arachidonic acid liberated in response to carbamoylcholine was measured by gas chromatography-mass spectrometry, and the time course of stimulated arachidonate accumulation paralleled that of inositol phosphate accumulation and amylase release. These observations suggest that in exocrine pancreas, endogenous arachidonic acid serves as a negative feedback regulator of phosphoinositide turnover.  相似文献   

5.
The effects of arachidonic acid on [3H]choline uptake, on [3H]acetylcholine accumulation, and on endogenous acetylcholine content and release in rat cerebral cortical synaptosomes were investigated. Arachidonic acid (10-150 microM) produced a dose-dependent inhibition of high-affinity [3H]choline uptake. Low-affinity [3H]choline uptake was also inhibited by arachidonic acid. Fatty acids inhibited high-affinity [3H]choline uptake with the following order of potency: arachidonic greater than palmitoleic greater than oleic greater than lauric; stearic acid (up to 150 microM) had no effect. Inhibition of [3H]choline uptake by arachidonic acid was reversed by bovine serum albumin. In the presence of arachidonic acid, there was an increased accumulation of choline in the medium, but this did not account for the inhibition of [3H]choline uptake produced by the fatty acid. Arachidonic acid inhibited the synthesis of [3H]acetylcholine from [3H]choline, and this inhibition was equal in magnitude to the inhibition of high-affinity [3H]choline uptake produced by the fatty acid. A K+-stimulated increase in [3H]acetylcholine synthesis was inhibited completely by arachidonic acid. Arachidonic acid also depleted endogenous acetylcholine stores. Concentrations of arachidonic acid and hemicholinium-3 that produced equivalent inhibition of [3H]choline uptake also produced equivalent depletion of acetylcholine content. In the presence of eserine, arachidonic acid had no effect on acetylcholine release. The results suggest that arachidonic acid may deplete acetylcholine content by inhibiting high-affinity choline uptake and subsequent acetylcholine synthesis. This raises the possibility that arachidonic acid may play a role in the impairment of cholinergic transmission seen in cerebral ischemia and other conditions in which large amounts of the free fatty acid are released in brain.  相似文献   

6.
Pretreatment of the D-deficient chick with 1,25-dihydroxyvitamin D3 increases de novo synthesis of phosphatidylcholine by a stimulation of CDP-choline: sn-1,2-diacylglycerol choline-phosphotransferase reaction. The time course of change in the incorporation of [3H]choline and [14C]ethanolamine into the brush border lipid fraction after 1,25-dihydroxyvitamin D3 treatment correlates closely with the time course of change in calcium uptake into the brush border membrane vesicles. Prior treatment with cycloheximide does not block this increase in phosphatidylcholine synthesis. In addition, 1,25-dihydroxyvitamin D3 administration increases the incorporation of [3H]arachidonic acid into the phosphatidylcholine fraction of the brush border to a great extent but does not increase the incorporation of [3H]palmitic acid into the phosphatidylcholine fraction. The incorporation of these 3H labeled fatty acids into diacylglycerol is not changed by 1,25-dihydroxyvitamin D3. These data indicate that 1,25-dihydroxyvitamin D3 enhances the synthesis of phosphatidylcholine independent of new protein synthesis, and also increases the incorporation of unsaturated fatty acids into phosphatidylcholine. From these results we suggest that changes in phospholipid metabolism in the enterocyte are the mechanisms by which 1,25-dihydroxyvitamin D3 acts to enhance calcium entry across the brush border membrane.  相似文献   

7.
8-Hydroxyoctadeca-9Z,12Z-dienoic acid (8-HODE) and 10-hydroxyoctadeca-8E,12Z-octadecadienoic acid (10-HODE) are produced by fungi, e.g., 8R-HODE by Gaeumannomyces graminis (take-all of wheat) and Aspergillus nidulans, 10S-HODE by Lentinula edodes, and 10R-HODE by Epichloe typhina. Racemic [8-(2)H]8-HODE and [10-(2)H]10-HODE were prepared by oxidation of 8- and 10-HODE to keto fatty acids by Dess-Martin periodinane followed by reduction to hydroxy fatty acids with NaB(2)H(4). The hydroxy fatty acids were analyzed by chiral phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with 8R-HODE and 10S-HODE as standards. 8R-HODE eluted after 8S-HODE on silica with cellulose tribenzoate (Chiralcel OB-H), and 10S-HODE eluted before 10R-HODE on silica with an aromatic chiral selector (Reprosil Chiral-NR). 5S,8R-Dihydroxyoctadeca-9Z,12Z-dienoic acid (5S,8R-DiHODE) is formed from 18:2n-6 by A. nidulans and 8R,11S-dihydroxyoctadeca-9Z,12Z-dienoic acid (8R,11S-DiHODE) by Agaricus bisporus. 8R-Hydroperoxylinoleic acid (8R-HPODE) can be transformed to 5S,8R-DiHODE and 8R,11-DiHODE by Aspergillus spp., and 8R,13-dihydroxy-9Z,11E-dienoic acid (8R,13-DiHODE) can also be detected. We prepared racemic [5,8-(2)H(2)]5,8- and [8,11-(2)H(2)]8,11-DiHODE by oxidation and reduction as above and 8R,13S- and 8R,13R-DiHODE by oxidation of 8R-HODE by S and R lipoxygenases. The diastereoisomers were separated and identified by normal phase HPLC-MS/MS analysis. We used the methods for steric analysis of fungal oxylipins. Aspergillus spp. produced 8R-HODE (>95% R), 10R-HODE (>70% R), and 5S,8R- and 8R,11S-DiHODE with high stereoselectivity (>95%), whereas 8R,13-DiHODE was likely formed by nonenzymatic hydrolysis of 8R,11S-DiHODE.  相似文献   

8.
Mycoplasma capricolum, a procaryotic sterol and fatty acid auxotroph was grown on media supplemented with [3H]palmitate or [3H]oleate. The isolated bacterial membranes were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Of the more than 50 membrane polypeptides revealed by Coomassie blue staining, approximately 25 were labeled with [3H]palmitate and only about 6 were labeled with [3H]oleate. Exhaustive delipidation of the membranes with chloroform:methanol did not alter the labeling pattern. Treatment of delipidated membranes by mild alkaline hydrolysis released up to 71% of the [3H]palmitate and 93% of the [3H]oleate. The data suggest that numerous membrane proteins of M. capricolum are covalently modified by acylation with saturated and unsaturated fatty acids. Cerulenin, a specific inhibitor of fatty acid synthesis had no effect on the labeling of mycoplasma membrane proteins by either [3H]palmitate or [3H]oleate. A small amount of membrane-associated cholesterol previously shown to stimulate sequentially the synthesis of unsaturated phospholipid, RNA, and protein (Dahl, J. S., and Dahl, C. E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 692-696) specifically enhances the acylation of certain proteolipids by oleate but not by palmitate.  相似文献   

9.
The incorporation of radiolabeled arachidonic acid and saturated fatty acids into choline-linked phosphoglycerides (PC) of rabbit and human neutrophils was investigated by resolving the individual molecular species by reversed-phase high performance liquid chromatography. PC from neutrophils incubated with a mixture of [3H]arachidonic acid and [14C]stearic or [14C]palmitic acid contains both radiolabels; however, double labeling of individual molecular species is minimal. After labeling for 2 h, the [3H]arachidonate is distributed almost equally between diacyl and 1-O-alkyl-2-acyl species, but it is incorporated into diacyl species containing unlabeled stearate or palmitate at the sn-1 position. In contrast, labeled saturated fatty acids are incorporated only into diacyl species and contain predominantly oleate and linoleate at the sn-2 position. Labeled linoleate is not incorporated into ether-linked species, but is found in the same species as labeled stearate. The findings suggest that mechanisms exist in neutrophils for specific shunting of exogenous arachidonic acid into certain phospholipid molecular species and support the concept that the 1-O-alkyl-2-arachidonoyl species may be a functionally segregated pool of arachidonic acid within the PC of neutrophils.  相似文献   

10.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

11.
The relationships between membrane fatty acid modification and neurite outgrowth and norepinephrine release were evaluated in PC12 cells. [3H]Norepinephrine release evoked by carbachol was unaffected by the modifications. Basal spontaneous release was elevated with increases in the degree of unsaturation using cells supplemented with n-3 fatty acids; a reverse correlation was observed for [3H]norepinephrine uptake. Supplementation of PC12 cells with either n-6 fatty acids or 18:1 also increased the basal release and decreased the uptake. Docosahexaenoic acid promoted and arachidonic acid suppressed neurite outgrowth induced by nerve growth factor. Choline acetyltransferase activity was slightly influenced by these fatty acids. Thus, modifications of PC12 cells with arachidonic acid and docosahexaenoic acid had a relatively small effect on the degree of differentiation but had pronounced but opposite effects on neurite elongation. Ethanolamine glycerophospholipid synthesis was elevated during differentiation induced by nerve growth factor and it was suppressed by added arachidonic acid but not by docosahexaenoic acid. Our results raise the possibility that the decreased phospholipid synthesis caused by arachidonate may lead to the suppression of neurite elongation.  相似文献   

12.
It is known that triphenylethylene anti-oestrogens such as tamoxifen bind to specific high-affinity anti-oestrogen-binding sites, which are distinct from oestrogen receptors. These binding sites are widely distributed in human and animal tissues, but their function and endogenous ligands are unknown. By using [3H]tamoxifen and a rat liver microsomal fraction, a radio-ligand-binding assay was developed in an attempt to identify endogenous ligands for the anti-oestrogen-binding sites in the rat. An ether extract of rat serum inhibited [3H]tamoxifen binding to rat liver binding sites in a dose-dependent manner. Identification of the active serum constituents that inhibited [3H]tamoxifen binding was achieved by g.l.c.-mass spectrometry after preliminary purification of a rat serum extract by silica-gel t.l.c. Three unsaturated fatty acids (oleic, linoleic and arachidonic) accounted for about 50% of the total inhibiting activity of the serum extract. The concentrations of these fatty acids required to inhibit [3H]tamoxifen binding were in the range of 10-100 microM, comparable with those found in the rat circulation under physiological conditions. Saturated fatty acids present in rat serum (palmitic and stearic) did not inhibit [3H]tamoxifen binding. A survey of other fatty acids revealed that, in general, unsaturated fatty acids were far more potent than saturated fatty acids in inhibiting [3H]tamoxifen binding. These studies demonstrate that unsaturated fatty acids are quantitatively the most important circulating inhibitors of [3H]tamoxifen binding to the anti-oestrogen-binding sites. The biological significance of their interaction with these sites, however, remains to be clarified.  相似文献   

13.
Hydrolysis of exogenous phosphatidylcholine (PtdCho) to 1,2-diacylglycerol by rat liver plasma membranes was stimulated by oleate concentrations as low as 0.1 mM. In the presence of 75 mM ethanol, the fatty acid also enhanced phosphatidylethanol (PtdEtOH) formation from PtdCho. These effects were also observed with linoleate and arachidonate, but not with saturated fatty acids or detergents, and were minimal in microsomes or mitochondria. Release of [3H]choline from exogenous Ptd[3H]Cho was stimulated by oleate, whereas phosphoryl[3H]choline formation was inhibited. Oleate and other unsaturated, but not saturated, fatty acids also stimulated the conversion of exogenous [14C]phosphatidic acid to [14C]diacylglycerol. These data are consistent with stimulatory effects of these fatty acids on both phospholipase D and phosphatidate phosphohydrolase in liver plasma membranes. The stimulatory effect of guanosine 5'-O-[3-thio]triphosphate) (20 microM) on PtdEtOH and diacylglycerol formation from PtdCho was enhanced by low concentrations of oleate. Phospholipase A2 also stimulated PtdEtOH and diacylglycerol formation from exogenous PtdCho. It is proposed that unsaturated fatty acids may play a physiological role in the regulation of diacylglycerol production through activation of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

14.
A one-pot synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4F) is presented, where x=1, 2, or 3 represents hydrogen, deuterium, or tritium, respectively. The current procedure offers high-yield, high-purity, and microscale-quantity synthesis. In this procedure, two enzymes were used simultaneously in the reaction mixture. The first was Thermoanaerobium brockii alcohol dehydrogenase, which stereospecifically catalyzed a hydride transfer from C-2-labeled isopropanol to the re face of oxidized nicotinamide adenine dinucleotide phosphate to form R-[4-xH]-labeled reduced nicotinamide adenine dinucleotide phosphate. The second enzyme, Escherichia coli dihydrofolate reductase, used the xH to reduce 7,8-dihydrofolate (H2F) to form S-[6-xH]5,6,7,8-tetrahydrofolate (S-[6-xH]H4F). The enzymatic reactions were followed by chemical trapping of S-[6-xH]H4F with formaldehyde to form the final product. Product purification was carried out in a single step by reverse phase high-pressure liquid chromatography separation followed by lyophilization. Two analytical methods were developed to follow the reaction progress. Finally, the utility of the labeled cofactor in mechanistic studies of thymidylate synthase is demonstrated by measuring the tritium kinetic isotope effect on the enzyme's second order rate constant.  相似文献   

15.
We have shown previously that docosahexaenoic acid (DHA) promotes and arachidonic acid (AA) suppresses neurite outgrowth of PC12 cells induced by nerve growth factor (NGF) and that incorporation of [3H]ethanolamine into phosphatidylethanolamine (PE) is suppressed in PC12 cells by AA while DHA has no effect. In the present study, the effects of these fatty acids on PE synthesis via decarboxylation of phosphatidylserine (PS), another pathway of PE synthesis, and distribution of aminophospholipids were examined. Incorporation of [3H]serine into PS and PE was elevated in the course of NGF-induced differentiation and was further stimulated significantly by DHA, but not by AA. [3H]Ethanolamine uptake by PC12 cells was significantly suppressed by AA but not by DHA while these fatty acids did not affect [3H]serine uptake, indicating that the suppression by AA of [3H]ethanolamine incorporation into phosphatidylethanolamine is attributable, at least in part, to a reduction in [3H]ethanolamine uptake. The distribution of PE in the outer leaflet of plasma membrane decreased during differentiation, which is known to be accompanied by an increase in the surface area of plasma membrane. Supplementation of PC12 cells with DHA or AA did not affect the distribution of aminophospholipids. Thus, DHA and AA affected aminophospholipid synthesis and neurite outgrowth differently, but not the transport and distribution of aminophospholipids, while the PE concentration in the outer leaflet of the plasma membrane decreased in association with morphological changes in PC12 cells induced by NGF.  相似文献   

16.
Challenge of Madin-Darby canine kidney (MDCK) cells with the divalent cation ionophore A23187 caused a marked increase in the deacylation of [3H]arachidonic acid but not of [14C]palmitic acid. When the cells were treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and A23187, there was an additional increase in the deacylation of [3H]arachidonic acid compared to that observed with either agent alone. In contrast to deacylation, the stimulation of prostaglandin production by A23187 was small compared to the stimulation by TPA. Cycloheximide inhibited synthesis of prostaglandins in TPA-treated cells, but did not block the stimulated deacylation caused by either TPA or A23187. These data indicate that, while both TPA and A23187 stimulated the deacylation of [3H]arachidonic acid, TPA had an additional, cycloheximide-sensitive effect that was required for efficient conversion of the release fatty acids to prostaglandins. Thus, although required, deacylation appeared to be independent of and insufficient to stimulate maximum prostaglandin synthesis in these cells.  相似文献   

17.
In addition to providing energy and essential fatty acids, dietary fatty acids can affect numerous biochemical and physiologic reactions related to secretory, cardiovascular, and immune functions. The major dietary unsaturated fatty acid, linoleic acid, affects tissue arachidonic acid and can influence eicosanoid-mediated reactions. Chronic, excess, or imbalanced eicosanoid synthesis may be conductive to excessive inflammation, thrombotic tendencies, atherosclerosis, and immune suppression. Dietary n-3 polyunsaturated fatty acids (PUFAs) may ameliorate eicosanoid-related phenomena by reducing tissue arachidonic acid and by inhibiting eicosanoid synthesis. This review summarizes information concerning the metabolism of unsaturated fatty acids, with emphasis on tissue arachidonic acid levels and eicosanoids, and discusses the need for data concerning the appropriate intake of dietary n-6 and n-3 PUFAs to modulate arachidonic acid and eicosanoid synthesis and to minimize possible adverse reactions.  相似文献   

18.
Rat brain minces were used to investigate the effects of nucleotides on the metabolism of arachidonic acid in nerve tissue. Brain free fatty acids, neutral lipids and phospholipids, were radiolabeled in vivo following intracerebral injection of [3H]arachidonic acid. Minces were prepared from the radiolabeled cerebra and were incubated in a modified Krebs-Ringer buffer with and without various nucleotides. The incubation-induced accumulation of unesterified [3H]arachidonate was reduced in the presence of CDPcholine, ATP, CTP, GTP, and UTP. These nucleotides inhibited choline and inositol glycerophospholipid hydrolysis. They also reduced the amount of labeled diglycerides. However, CDPethanolamine had no effect on arachidonic acid metabolism in the mince preparation and CMP appeared to stimulate further hydrolysis of choline glycerophospholipids, resulting in increased accumulation of [3H]arachidonic acid and labeled diglycerides. We suggest that the production of unesterified [3H]arachidonate and labeled diglycerides is due to the involvement of more than one catabolic reaction, since the high energy nucleotides had similar effects on fatty acid accumulation, but different effects on phospholipid labeling.  相似文献   

19.
Chinese hamster ovary (CHO) cells convert [9,10-3H]myristic acid ([3H]14:0) to several lipid-soluble, radioactive metabolites that are released into the medium. The main products are lauric (12:0) and decanoic (10:0) acids. Some of the 12:0 formed also is retained in cell lipids. Similar metabolites are not synthesized from palmitic (16:0), oleic (18:1), or arachidonic (20:4) acids, and the addition of these fatty acids does not reduce the conversion of [3H]14:0 to 12:0. Two peroxisome-deficient CHO cell lines do not convert [3H] 14:0 to any polar metabolites, but, they elongate, desaturate, and incorporate [3H]14:0 into intracellular lipids and proteins normally. While BC3H1 muscle cells convert some [3H]14:0 to 12:0, they also produce at least nine lipid-soluble polar products from [3H]12:0. These findings suggest that a previously unrecognized function of myristic acid is to serve as a substrate for the synthesis of 12:0, which can be either secreted into the medium or converted to other oxidized metabolites. The absence of this peroxisomal oxidation pathway, however, does not interfere with other aspects of myristic acid metabolism, including protein myristoylation.  相似文献   

20.
In higher plants, C6 and C9 aldehydes are formed from C18 fatty acids, such as linoleic or linolenic acid, through formation of 13- and 9-hydroperoxides, followed by their stereospecific cleavage by fatty acid hydroperoxide lyases (HPL). Some marine algae can also form C6 and C9 aldehydes, but their precise biosynthetic pathway has not been elucidated fully. In this study, we show that Laminaria angustata, a brown alga, formed C6 and C9 aldehydes enzymatically. The alga forms C9 aldehydes exclusively from the C20 fatty acid, arachidonic acid, while C6 aldehydes are derived either from C18 or from C20 fatty acid. The intermediates in the biosynthetic pathway were trapped by using a glutathione/glutathione peroxidase system, and subjected to structural analyses. Formation of (S)-12-, and (S)-15-hydroperoxy arachidonic acids [12(S)HPETE and 15(S)HPETE] from arachidonic acid was confirmed by chiral HPLC analyses. These account respectively for C9 aldehyde and C6 aldehyde formation, respectively. The HPL that catalyzes formation of C9 aldehydes from 12(S)HPETE seems highly specific for hydroperoxides of C20 fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号