首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peptides substance K and substance P evoke a variety of biological responses via distinct, guanosine-nucleotide-binding-regulatory-protein-coupled receptors. We have screened a murine genomic cosmid library using oligonucleotide probes and have isolated, cloned and characterized the substance K receptor and the substance P receptor genes. The coding portion of the substance K receptor gene consists of five exons distributed over 13 kbp. The substance P receptor gene is considerably larger than that of substance K (more than 30 kbp), however, the boundaries of the four exons that have been characterized in the substance P receptor gene correspond exactly to the homologous exons in the substance K receptor gene. To verify the identity of the isolated genes, we have cloned the corresponding cDNA by means of the polymerase chain reaction and we have expressed these cDNA species in Xenopus laevis oocytes. The ligand binding characteristics determined in this system pharmacologically confirm the identity of the two receptors. The deduced amino acid sequence of the mouse substance K receptor is 94% identical to the rat sequence and 85% identical to the bovine and human sequences. The mouse substance P receptor amino acid sequence is 99% identical to the rat sequence. The cloning of the murine substance K and substance P receptor genes should contribute substantially to the generation of in vivo models for the detailed analysis of the functional significance of these receptors.  相似文献   

2.
Molecular characterization of rat substance K receptor and its mRNAs   总被引:11,自引:0,他引:11  
The nucleotide sequence and the amino acid sequence for rat substance K receptor were deduced by molecular cloning and sequence analysis of its cDNAs. The rat substance K receptor consists of 390 amino acid residues and belongs to the family of G protein-coupled receptors. The comparison of the amino acid sequences of the rat and bovine substance K receptors indicated that they are highly homologous in the regions covering seven putative transmembrane domains, and this similarity is particularly remarkable in the transmembrane segments III and VII and their surrounding regions. RNA blot hybridization analysis showed that the rat substance K receptor is encoded by two species of mRNAs which differ in the lengths of the extreme 5' sequence of the 5'-untranslated regions. This analysis also indicated that the substance K receptor mRNAs are expressed in the gastrointestinal tract. Interestingly, no appreciable substance K receptor mRNAs were detected in poly(A)+ RNAs isolated from the brain and spinal cord, even though these tissues are known to not only contain substance K but also express the mRNA encoding the substance K precursor.  相似文献   

3.
Using an antiserum directed at the COOH-terminus of tachykinins, we have examined postmortem tissue from two cases of metastatic ileal carcinoid for the presence of tachykinin-like immunoreactivity. The vast majority of the immunoreactive tachykinin-like material eluted from a Sephadex G-50 column as two peaks at positions corresponding to molecular weights of 1300 and 850. The 1300 dalton peak was resolved by reverse-phase-HPLC into two components which by Edman sequencing, amino acid analysis, and fast atom bombardment (FAB)-mass spectrometry criteria, were identified as substance P and substance K. The 850 dalton peak was also resolved on RP-HPLC into two peaks which were resistant to Edman degradation but from amino acid analysis and FAB-mass spectrometry criteria were identified as pyro-Glu-substance P 5-11 and oxidized pyro-Glu-substance P 5-11. In control experiments substance P 5-11 was converted to pyro-Glu-substance P 5-11 during the extraction procedure. Both tumors also contained a minor immunoreactive peak which eluted from a Sephadex G-50 sizing column at a position corresponding to a molecular weight of 4000 which probably represents neuropeptide K. These results suggest that beta-preprotachykinin is preferentially expressed in carcinoid tumors and that substance K may also play a role in the carcinoid syndrome.  相似文献   

4.
Rat genomic clones were used to quantitate preprotachykinin mRNAs in the rat basal ganglia, while the tachykinin peptide products substance P and substance K were measured by radioimmunoassay. Administration of the dopamine antagonist (antipsychotic) drug haloperidol significantly decreased substance P, substance K, and both alpha (substance P encoding) and beta (substance P/substance K encoding) preprotachykinin mRNAs, suggesting a drug-induced decrease in striatonigral tachykinin biosynthesis. The time course for decreased preprotachykinin mRNAs and tachykinins apparently parallels the period of maximum risk for the development of certain antipsychotic drug-induced extrapyramidal side effects seen clinically. Tachykinin interaction with dopamine neurons may play an important role in the modulation of basal ganglia function.  相似文献   

5.
Are the proposed substance P receptor sub-types,substance P receptors?   总被引:6,自引:0,他引:6  
S P Watson 《Life sciences》1984,35(8):797-808
Recently, a number of laboratories have postulated the existence of receptor sub-types for substance P. This review is intended to represent a critical appraisal of these reports. In the majority of cases, the evidence for the existence of receptor sub-types has been obtained from observed potency differences of agonists. The problems with this approach are discussed. In addition, information obtained through substance P antagonists, binding studies and investigations of second messenger systems is presented and discussed in relation to the above receptor subdivisions. It is concluded that the present results are consistent with the existence of three receptor sub-types; however, it is suggested that substance P is the natural agonist for only one of these receptors, and that substance K and tuftsin may be the transmitters for the other two receptor sub-types.  相似文献   

6.
The primary structure of the human substance K receptor was established from the sequences of complementary DNA clones isolated from a human jejunal complementary DNA library. It consists of 398 amino acids, including seven putative transmembrane regions. The gene for the human substance K receptor was localized to chromosome region 10p13-10q23, a region with frequent chromosomal abnormalities. The human substance K receptor was expressed in transfected NIH-3T3 cells lacking endogenous substance K receptors, and Scatchard analysis of 125I-labeled substance K binding indicates approximately 100,000 receptors/cell with a single dissociation constant of 12 nM. Covalent cross-linking experiments utilizing 125I-substance K and three different chemical cross-linking reagents (disuccinimidyl suberate, disuccinimidyl tartrate, or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-HCl) demonstrate an apparent molecular weight of 45,000, consistent with little or no N-linked glycosylation. The binding of substance K to its receptor on transfected cells led to a rapid increase in the production of total inositol phosphates and the release of Ca2+ from internal stores. Growth of the cells transfected with the human substance K receptor is stimulated by the addition of substance K to the medium to a level similar to 10% serum. Therefore, the human substance K receptor can function as a growth factor receptor when expressed in mouse 3T3 cells.  相似文献   

7.
Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for 125I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: 1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; 2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; 3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and 4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells.  相似文献   

8.
The present experiments examined the local effects of two new mammalian tachykinins isolated from porcine spinal cord, substance K and neuromedin K, on gastroduodenal motility of anesthetized dogs. Tachykinins were injected through the gastroepiploic and cranial pancreaticoduodenal arteries at concentrations ranging from 1 to 100 ng/ml. Substance K, neuromedin K and substance P increased gastroduodenal smooth muscle contractions in a dose-dependent manner. The contractile response of the gastric antrum to newly discovered tachykinins was not as long-lasting as that to substance P. The potencies of various tachykinins on contractile responses showed the following rank order of potencies: physalaemin = eledoisin = substance P greater than substance K = neuromedin K in gastric smooth muscle; physalaemin = substance P = eledoisin greater than substance K = neuromedin K in the duodenal smooth muscle. Administration of atropine (100-200 micrograms/kg) inhibited the effect of tachykinins both in the gastric antrum and in the proximal duodenum. These results indicate that substance K and neuromedin K could act as transmitters or as modulators of neuronal activity influencing gastroduodenal motility.  相似文献   

9.
Hemokinin-1 (HK-1) is a novel substance P (SP)-like peptide that is encoded by the preprotachykinin C (PPT-C) gene recently identified in mouse B cells and shown to be a potentially important regulator of B cell development (Nat. Immunol. 1 (2000) 392). We have now isolated and characterized the human and rat orthologs of PPT-C and examined activities of human and mouse HK-1 on the three tachykinin receptors, neurokinin-1-3 (NK1-3). The rat PPT-C polypeptide is highly homologous to mouse PPT-C and contains the same processing sites to generate predicted HK-1. The human PPT-C polypeptide is also homologous to mouse PPT-C, however, it contains two potential monobasic cleavage sites rather than a single dibasic cleavage site at the amino-terminal end of the predicted HK-1 peptide. Thus, human PPT-C has the potential to generate full length predicted HK-1 as well as a truncated version (HK-1(4-11)). Polymerase chain reaction analysis revealed that both human and mouse PPT-C were expressed in a variety of tissues with strong signals detected in the skin of both species and in the mouse brain. Binding and functional analysis indicated that human and mouse HK-1 peptides were nearly identical to SP in their overall activity profile on the three NK receptors with the most potent affinity for the NK1 receptor. The results indicate that PPT-C encodes another high affinity ligand of the NK1 receptor which may play an important role in mediating some of the physiological roles previously assigned to the NK1 receptor.  相似文献   

10.
During the formation of an inhibitory complex with neutrophil elastase, alpha 1 antitrypsin (alpha 1 AT) undergoes a structural rearrangement and the resulting alpha 1 AT-elastase complex becomes endowed with chemoattractant activities, mediates an increase in synthesis of alpha 1 AT, and is rapidly cleared from the circulation. In previous studies we have provided evidence that these biological activities involve the recognition of a conformation-specific domain in the alpha 1 AT molecule by a cell surface receptor on human hepatoma HepG2 cells and human monocytes. The receptor has been termed the serpin-enzyme complex (SEC) receptor because it also recognizes complex of serpins antithrombin III, alpha 1 anti-chymotrypsin, and C1 inhibitor with their cognate enzymes. Because a pentapeptide domain of alpha 1 AT (amino acids 370-374, Phe-Val-Phe-Leu-Met) is sufficient for binding to the SEC receptor and the sequence of this domain is remarkably similar to those of substance P, several other tachykinins, bombesin, and the amyloid-beta peptide, we have examined the possibility that these other ligands bind to the SEC receptor. The results indicate that substance P, several other tachykinins, and bombesin compete for binding to, and cross-linking of, the SEC receptor. The SEC receptor is distinct from the substance P receptor by several criteria. There is no substance P receptor mRNA in HepG2 cells; the SEC receptor is present in much higher density on receptor-bearing cells and binds its ligands at lower affinity than the substance P receptor; the SEC receptor is much less restricted in the specificity with which it recognizes ligand; ligands for the SEC receptor including peptide 105Y (based on alpha 1 AT sequence 359-374), alpha 1 AT-protease complexes, and bombesin do not compete for binding of substance P to a stable transfected cell line expressing the substance P receptor. Finally, we show here that the amyloid-beta peptide competes for binding to the SEC receptor but does not bind to the substance P receptor, therein raising the possibility that the SEC receptor is involved in certain biological activities, including the recently described neurotrophic and neurotoxic effects ascribed to the amyloid-beta peptide.  相似文献   

11.
12.
13.
Substance P and substance K (Neurokinin A) are mammalian peptides belonging to the tachykinin family. Both have been studied extensively, are widely distributed in both central and peripheral mammalian nervous systems, and seem to be involved in pain reactions and inflammatory responses. We report here that substance P and substance K, as well as Epidermal Growth Factor (EGF), are potent mitogens, at micro and nanomolar concentrations, for planarian cells. This stimulation is inhibited by the substance P and substance K antagonist spantide, while capsaicin, a pungent agent of capsicum peppers that destroys sensory neurons, stimulates cell division, probably through release of substance P. These results, jointly with the reported stimulation of cell division by naloxone and its inhibition by Met-Enkephalin (Bagu?a, 1986), both probably acting on tachykinin release, suggest that target cells, the neoblasts, must have in their cell membranes numerous receptors for growth hormones and neuropeptides analogous to their mammalian counterparts.  相似文献   

14.
目的 :探讨K物质 (SK)对心肌细胞收缩的影响及机制。方法 :原代培养幼鼠心肌细胞 ,利用计算机图像分析系统测定SK处理前后心肌细胞收缩频率和收缩幅度的变化 ,同时观察预先加入速激肽受体拮抗剂DSP、β受体阻断剂心得安、α受体阻断剂酚妥拉明对SK作用的影响。结果 :当加入SK (1 .78× 1 0 - 5mol/L)到培养细胞中时 ,心肌细胞收缩幅度增强 ,但收缩频率变化不显著 ;且在 1 0 - 8~ 1 0 - 5mol/L浓度范围内心肌细胞收缩幅度变化呈剂量 效应关系 ;预先加入DSP可抑制SK对心肌细胞的影响 ,而心得安、酚妥拉明对SK的作用无影响。结论 :SK使心肌细胞的收缩幅度增强 ,其作用是由速激肽受体介导的  相似文献   

15.
The distribution of binding sites in rat brain for iodinated neurokinin A and iodinated substance P were compared using autoradiography. Distinct patterns of binding for the two iodinated tachykinins were noted. Binding sites for iodinated neurokinin A were noted in the olfactory bulb, cortex, supraoptic n., paraventricular n., certain amygdaloid n., hippocampus, medial habenula, interpeduncular n., n. of the tractus solitarius, and dorsal horn of the spinal cord. This pattern was in contrast to low levels of binding of iodinated substance P to the cortex, supraoptic n., paraventricular n., and the interpeduncular n., but substantial density of binding sites in numerous other regions.  相似文献   

16.
A cDNA encoding the human substance P receptor (SPR) was isolated and the primary structure of the protein was deduced by nucleotide sequence analysis. This SPR consists of 407 residues and is a member of the G-protein coupled receptor superfamily. Comparison of rat and human SPR sequences demonstrated a 94.5% identity. The receptor was expressed in a COS-7 cell line and displayed a Kd for Tyr-1-SP binding of 0.24 nM. Ligand displacement by naturally occurring tachykinin peptides was SP much greater than neurokinin A greater than neurokinin B. SP stimulation of transfected cells resulted in a rapid and transient inositol 1,4,5-trisphosphate response. RNA blot hybridization and solution hybridization demonstrated that SPR mRNA was about 4.5 Kb in size, and was expressed in IM-9 lymphoblast and U373-MG astrocytoma cells, as well as in spinal cord and lung but not in liver.  相似文献   

17.
The mechanism of pancreatitis-induced pain is unknown. In other tissues, inflammation activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to liberate CGRP and substance P (SP) in peripheral tissues and the dorsal horn to cause neurogenic inflammation and pain, respectively. We evaluated the contribution of TRPV1, CGRP, and SP to pancreatic pain in rats. TRPV1, CGRP, and SP were coexpressed in nerve fibers of the pancreas. Injection of the TRPV1 agonist capsaicin into the pancreatic duct induced endocytosis of the neurokinin 1 receptor in spinal neurons in the dorsal horn (T10), indicative of SP release upon stimulation of pancreatic sensory nerves. Induction of necrotizing pancreatitis by treatment with L-arginine caused a 12-fold increase in the number of spinal neurons expressing the proto-oncogene c-fos in laminae I and II of L1, suggesting activation of nociceptive pathways. L-arginine also caused a threefold increase in spontaneous abdominal contractions detected by electromyography, suggestive of referred pain. Systemic administration of the TRPV1 antagonist capsazepine inhibited c-fos expression by 2.5-fold and abdominal contractions by 4-fold. Intrathecal, but not systemic, administration of antagonists of CGRP (CGRP(8-37)) and SP (SR140333) receptors attenuated c-fos expression in spinal neurons by twofold. Thus necrotizing pancreatitis activates TRPV1 on pancreatic sensory nerves to release SP and CGRP in the dorsal horn, resulting in nociception. Antagonism of TRPV1, SP, and CGRP receptors may suppress pancreatitis pain.  相似文献   

18.
19.
A novel photoreactive substance P (SP) analogue has been synthesized by solid-phase peptide synthesis methodology to incorporate the amino acid p-benzoyl-L-phenylalanine [L-Phe(pBz)] in place of the Phe8 residue of SP. [Phe8(pBz)]SP was equipotent with SP in competing for SP binding sites on rat submaxillary gland membranes and had potent sialagogic activity in vivo. In the absence of light, the 125I-labeled Bolton-Hunter conjugate of [Phe8(pBz)]SP bound in a saturable and reversible manner to an apparently homogeneous class of binding sites (Bmax = 0.2 pmol/mg of membrane protein) with an affinity KD = 0.4 nM. The binding of 125I-[Phe8(pBz)]SP was inhibited competitively by various tachykinin peptides and analogues with the appropriate specificity for SP/NK-1 receptors. Upon photolysis, up to 70% of the specifically bound 125I-[Phe8(pBz)]SP underwent covalent linkage to two polypeptides of Mr = 53,000 and 46,000, identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Quantitative analysis of the inhibitory effects of SP and related peptides on 125I-[Phe8(pBz)]SP photoincorporation indicated that the binding sites of the two photolabeled polypeptides have the same peptide specificity, namely, that typical of NK-1-type SP receptors. In addition, the labeling of the two polypeptides was equally sensitive to inhibition by guanyl-5'-yl imidodiphosphate, a nonhydrolyzable analogue of GTP. Further information on the relationship between the two labeled SP binding sites was provided by enzymatic digestion studies: the Mr = 46,000 polypeptide contains N-linked carbohydrates and is derived most likely from the higher molecular weight species by proteolytic nicking.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The neuropeptide substance P (SP) has been hypothesized to be involved in the etiopathology of affective disorders. This hypothesis is based on the findings that neurokinin-1-receptor antagonists have antidepressant effects in depressed patients and that SP may worsen mood. In this study, we investigated the effect of the mood-stabilizing agents valproic acid (VPA), carbamazepine, and lithium on SP-induced gene expression. As a model system, we used primary rat astrocytes and human astrocytoma cells, which both express functional SP-receptors and, upon stimulation with SP, synthesize interleukin-6 (IL-6), a cytokine which has been shown to be elevated during the acute depressive state. We found that VPA dose-dependently inhibited SP-induced IL-6 synthesis which was seen with pre-incubation periods of 30 min, 3, 7 and 14 days, whereas carbamazepine and lithium showed no inhibitory effect. The inhibitory effect of VPA was not mediated by inhibition of the stress-regulated kinases p38 and p42/44 (Erk1/2) but by inhibition of protein kinase C epsilon activation. Furthermore, VPA down-regulated the expression of the substance P receptor (neurokinin(NK)-1-receptor) as assessed by real-time PCR. Whether both mechanisms contribute to the mood-stabilizing properties of VPA has to be evaluated in further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号