首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
XPD-like helicases constitute a prominent DNA helicase family critical for many aspects of genome maintenance. These enzymes share a unique structural feature, an auxiliary domain stabilized by an iron-sulphur (FeS) cluster, and a 5′–3′ polarity of DNA translocation and duplex unwinding. Biochemical analyses alongside two single-molecule approaches, total internal reflection fluorescence microscopy and high-resolution optical tweezers, have shown how the unique structural features of XPD helicase and its specific patterns of substrate interactions tune the helicase for its specific cellular function and shape its molecular mechanism. The FeS domain forms a duplex separation wedge and contributes to an extended DNA binding site. Interactions within this site position the helicase in an orientation to unwind the duplex, control the helicase rate, and verify the integrity of the translocating strand. Consistent with its cellular role, processivity of XPD is limited and is defined by an idiosyncratic stepping kinetics. DNA duplex separation occurs in single base pair steps punctuated by frequent backward steps and conformational rearrangements of the protein–DNA complex. As such, the helicase in isolation mainly stabilizes spontaneous base pair opening and exhibits a limited ability to unwind stable DNA duplexes. The presence of a cognate ssDNA binding protein converts XPD into a vigorous helicase by destabilizing the upstream dsDNA as well as by trapping the unwound strands. Remarkably, the two proteins can co-exist on the same DNA strand without competing for binding. The current model of the XPD unwinding mechanism will be discussed along with possible modifications to this mechanism by the helicase interacting partners and unique features of such bio-medically important XPD-like helicases as FANCJ (BACH1), RTEL1 and CHLR1 (DDX11).  相似文献   

3.
In nucleotide excision repair (NER), the xeroderma pigmentosum D helicase (XPD) scans DNA searching for bulky lesions, stalls when encountering such damage to verify its presence, and allows repair to proceed. Structural studies have shown XPD bound to its single-stranded DNA substrate, but molecular and dynamic characterization of how XPD translocates on undamaged DNA and how it stalls to verify lesions remains poorly understood. Here, we have performed extensive all-atom MD simulations of human XPD bound to undamaged and damaged ssDNA, containing a mutagenic pyrimidine (6−4) pyrimidone UV photoproduct (6−4PP), near the XPD pore entrance. We characterize how XPD responds to the presence of the DNA lesion, delineating the atomistic-scale mechanism that it utilizes to discriminate between damaged and undamaged nucleotides. We identify key amino acid residues, including FeS residues R112, R196, H135, K128, Arch residues E377 and R380, and ATPase lobe 1 residues 215−221, that are involved in damage verification and show how movements of Arch and ATPase lobe 1 domains relative to the FeS domain modulate these interactions. These structural and dynamic molecular depictions of XPD helicase activity with unmodified DNA and its inhibition by the lesion elucidate how the lesion is verified by inducing XPD stalling.  相似文献   

4.
5.
6.
7.
DinG (damage inducible gene G) is a bacterial superfamily 2 helicase with 5′→3′ polarity. DinG is related to the XPD (xeroderma pigmentosum complementation group D) helicase family, and they have in common an FeS (iron–sulfur)-binding domain that is essential for the helicase activity. In the bacilli and clostridia, the DinG helicase has become fused with an N-terminal domain that is predicted to be an exonuclease. In the present paper we show that the DinG protein from Staphylococcus aureus lacks an FeS domain and is not a DNA helicase, although it retains DNA-dependent ATP hydrolysis activity. Instead, the enzyme is an active 3′→5′ exonuclease acting on single-stranded DNA and RNA substrates. The nuclease activity can be modulated by mutation of the ATP-binding cleft of the helicase domain, and is inhibited by ATP or ADP, suggesting a modified role for the inactive helicase domain in the control of the nuclease activity. By degrading rather than displacing RNA or DNA strands, the S. aureus DinG nuclease may accomplish the same function as the canonical DinG helicase.  相似文献   

8.
Helicase from hepatitis C virus,energetics of DNA binding   总被引:9,自引:0,他引:9  
The ability of a helicase to bind single-stranded nucleic acid is critical for nucleic acid unwinding. The helicase from the hepatitis C virus, NS3 protein, binds to the 3'-DNA or the RNA strand during unwinding. As a step to understand the mechanism of unwinding, DNA binding properties of the helicase domain of NS3 (NS3h) were investigated by fluorimetric binding equilibrium titrations. The global analysis of the binding data by a combinatorial approach was done using MATLAB. NS3h interactions with single-stranded DNA (ssDNA) are 300-1000-fold tighter relative to duplex DNA. The NS3h protein binds to ssDNA less than 15 nt in length with a stoichiometry of one protein per DNA. The minimal ssDNA binding site of NS3h helicase was determined to be 8 nucleotides with the microscopic K(d) of 2-4 nm or an observed free energy of -50 kJ/mol. These NS3h-DNA interactions are highly sensitive to salt, and the K(d) increases 4 times when the NaCl concentration is doubled. Multiple HCV helicase proteins bind to ssDNA >15 nucleotides in length, with an apparent occluded site of 8-11 nucleotides. The DNA binding data indicate that the interactions of multiple NS3h protein molecules with long ssDNA are both noncooperative and sequence-independent. We discuss the DNA binding properties of HCV helicase in relation to other superfamily 1 and 2 helicases. These studies provide the basis to investigate the DNA binding interactions with the unwinding substrate and their modulation by the ATPase activity of HCV helicase.  相似文献   

9.
We have investigated the DNA substrate specificity of BACH1 (BRCA1-associated C-terminal helicase). The importance of various DNA structural elements for efficient unwinding by purified recombinant BACH1 helicase was examined. The results indicated that BACH1 preferentially binds and unwinds a forked duplex substrate compared with a duplex flanked by only one single-stranded DNA (ssDNA) tail. In support of its DNA substrate preference, helicase sequestration studies revealed that BACH1 can be preferentially trapped by forked duplex molecules. BACH1 helicase requires a minimal 5 ' ssDNA tail of 15 nucleotides for unwinding of conventional duplex DNA substrates; however, the enzyme is able to catalytically release the third strand of the homologous recombination intermediate D-loop structure irrespective of DNA tail status. In contrast, BACH1 completely fails to unwind a synthetic Holliday junction structure. Moreover, BACH1 requires nucleic acid continuity in the 5 ' ssDNA tail of the forked duplex substrate within six nucleotides of the ssDNA-dsDNA junction to initiate efficiently DNA unwinding. These studies provide the first detailed information on the DNA substrate specificity of BACH1 helicase and provide insight to the types of DNA structures the enzyme is likely to act upon to perform its functions in DNA repair or recombination.  相似文献   

10.
The Gp59 protein of bacteriophage T4 promotes DNA replication by loading the replicative helicase, Gp41, onto replication forks and recombination intermediates. Gp59 also blocks DNA synthesis by Gp43 polymerase until Gp41 is loaded, ensuring that synthesis is tightly coupled to unwinding. The distinct polymerase blocking and helicase loading activities of Gp59 likely involve different binding interactions with DNA and protein partners. Here, we investigate how interactions of Gp59 with DNA and Gp32, the T4 single-stranded DNA (ssDNA)-binding protein, are related to these activities. A previously characterized mutant, Gp59-I87A, exhibits markedly reduced affinity for ssDNA and pseudo-fork DNA substrates. We demonstrate that on Gp32-covered ssDNA, the DNA binding defect of Gp59-I87A is not detrimental to helicase loading and translocation. In contrast, on pseudo-fork DNA the I87A mutation is detrimental to helicase loading and unwinding in the presence or absence of Gp32. Other results indicate that Gp32 binding to lagging strand ssDNA relieves the blockage of Gp43 polymerase activity by Gp59, whereas the inhibition of Gp43 exonuclease activity is maintained. Our findings suggest that Gp59-Gp32 and Gp59-DNA interactions perform separate but complementary roles in T4 DNA metabolism; Gp59-Gp32 interactions are needed to load Gp41 onto D-loops, and other nucleoprotein structures containing clusters of Gp32. Gp59-DNA interactions are needed to load Gp41 onto nascent or collapsed replication forks lacking clusters of Gp32 and to coordinate bidirectional replication from T4 origins. The dual functionalities of Gp59 allow it to promote the initiation or re-start of DNA replication from a wide variety of recombination and replication intermediates.  相似文献   

11.
Saccharomyces cerevisiae Sgs1 protein is a member of the RecQ DNA helicase family which also includes the products of the human Bloom's syndrome and Werner's syndrome genes. We have studied the substrate specificity of a recombinant Sgs1 helicase (amino acid residues 400-1268 of the Sgs1 protein). Sgs1 shows a strong preference for binding branched DNA substrates, including duplex structures with a 3' single-stranded overhang and DNA junctions with multiple branches. Duplex DNA with a 5' rather than a 3' single-stranded tail is not recognized or unwound by Sgs1. DNase I and hydroxyl radical footprinting of the Sgs1-DNA complex shows that the protein binds specifically to the junction of a double-stranded DNA and its 3' overhang. Binding and unwinding of duplex DNA with a 3' overhang are much reduced if the backbone polarity of the 3' overhang is reversed in the junction region, but are unaffected if polarity reversal occurs four nucleotides away from the junction. These results indicate that the 3' to 5' polarity of unwinding by the recombinant Sgs1 protein is a direct consequence of the binding of the helicase to the single-stranded/double-stranded DNA junction and its recognition of the polarity of the single-stranded DNA at the junction. The recombinant Sgs1 also unwinds four-way junctions (synthetic Holliday junctions), a result that may be significant in terms of its role in suppressing DNA recombination in vivo.  相似文献   

12.
Escherichia coli UvrD is a 3′–5′ superfamily 1A helicase/translocase involved in a variety of DNA metabolic processes. UvrD can function either as a helicase or only as an single‐stranded DNA (ssDNA) translocase. The switch between these activities is controlled in vitro by the UvrD oligomeric state; a monomer has ssDNA translocase activity, whereas at least a dimer is needed for helicase activity. Although a 3′‐ssDNA partial duplex provides a high‐affinity site for a UvrD monomer, here we show that a monomer also binds with specificity to DNA junctions possessing a 5′‐ssDNA flanking region and can initiate translocation from this site. Thus, a 5′‐ss–duplex DNA junction can serve as a high‐affinity loading site for the monomeric UvrD translocase, whereas a 3′‐ss–duplex DNA junction inhibits both translocase and helicase activity of the UvrD monomer. Furthermore, the 2B subdomain of UvrD is important for this junction specificity. This highlights a separation of helicase and translocase function for UvrD and suggests that a monomeric UvrD translocase can be loaded at a 5′‐ssDNA junction when translocation activity alone is needed.  相似文献   

13.
Rad3 protein from the yeast Saccharomyces cerevisiae is a single-stranded DNA-dependent ATPase which catalyzes the unwinding of DNA.DNA duplexes. In the present studies we have demonstrated that the purified enzyme additionally catalyzes the displacement of RNA fragments annealed to complementary DNA. Quantitative comparisons using otherwise identical partially duplex DNA.DNA and DNA.RNA substrates indicate a significant preference for the latter. Competition for ATPase or DNA helicase activity by various homopolymers suggests that Rad3 protein does not discriminate between ribonucleotide and deoxyribonucleotide homopolymers with respect to binding. However, neither single-stranded RNA nor various ribonucleotide homopolymers supported the hydrolysis of nucleoside 5'-triphosphates. Additionally, Rad3 protein was unable to catalyze the displacement of oligo(dA) annealed to poly(U), suggesting that the catalytic domain of the enzyme is exquisitely sensitive to chemical and/or or conformational differences between DNA and RNA. Hence, it appears that Rad3 protein is not an RNA helicase.  相似文献   

14.
The yeast Srs2 helicase removes Rad51 nucleoprotein filaments from single-stranded DNA (ssDNA), preventing DNA strand invasion and exchange by homologous recombination. This activity requires a physical interaction between Srs2 and Rad51, which stimulates ATP turnover in the Rad51 nucleoprotein filament and causes dissociation of Rad51 from ssDNA. Srs2 also possesses a DNA unwinding activity and here we show that assembly of more than one Srs2 molecule on the 3′ ssDNA overhang is required to initiate DNA unwinding. When Rad51 is bound on the double-stranded DNA, its interaction with Srs2 blocks the helicase (DNA unwinding) activity of Srs2. Thus, in different DNA contexts, the physical interaction of Rad51 with Srs2 can either stimulate or inhibit the remodeling functions of Srs2, providing a means for tailoring DNA strand exchange activities to enhance the fidelity of recombination.  相似文献   

15.
Purified Rad3 protein from the yeast Saccharomyces cerevisiae is a single-stranded DNA-dependent ATPase and also acts as a DNA helicase on partially duplex DNA. In this study we show that the DNA helicase activity is inhibited when a partially duplex circular DNA substrate is exposed to ultraviolet (UV) radiation. Inhibition of DNA helicase activity is sensitive to the particular strand of the duplex region which carries the damage. Inhibition is retained if the single-stranded circle is irradiated prior to annealing to an unirradiated oligonucleotide, but not if a UV-irradiated oligonucleotide is annealed to unirradiated circular single-stranded DNA. UV irradiation of single-stranded DNA or deoxyribonucleotide homopolymers also inhibits the ability of these polynucleotides to support the hydrolysis of ATP by Rad3 protein. UV radiation damage apparently blocks translocation of Rad3 protein and results in the formation of stable Rad3 protein-UV-irradiated DNA complexes. As a consequence, Rad3 protein remains sequestered on DNA, presumably at sites of base damage. The sensitivity of Rad3 protein to the presence of DNA damage on the strand along which it translocates provides a potential mechanism for damage recognition during nucleotide excision repair and may explain the absolute requirement for Rad3 protein for damage-specific incision of DNA in yeast.  相似文献   

16.
The Rad51B, Rad51C, Rad51D and Xrcc2 proteins are Rad51 paralogs, and form a complex (BCDX2 complex) in mammalian cells. Mutant cells defective in any one of the Rad51-paralog genes exhibit spontaneous genomic instability and extreme sensitivity to DNA-damaging agents, due to inefficient recombinational repair. Therefore, the Rad51 paralogs play important roles in the maintenance of genomic integrity through recombinational repair. In the present study, we examined the DNA-binding preference of the human BCDX2 complex. Competitive DNA-binding assays using seven types of DNA substrates, single-stranded DNA (ssDNA), double-stranded DNA, 5′- and 3′-tailed duplexes, nicked duplex DNA, Y-shaped DNA and a synthetic Holliday junction, revealed that the BCDX2 complex preferentially bound to the two DNA substrates with branched structures (the Y-shaped DNA and the synthetic Holliday junction). Furthermore, the BCDX2 complex catalyzed the strand-annealing reaction between a long linear ssDNA (1.2 kb in length) and its complementary circular ssDNA. These properties of the BCDX2 complex may be important for its roles in the maintenance of chromosomal integrity.  相似文献   

17.
Rad51 protein controls Rad52-mediated DNA annealing   总被引:1,自引:0,他引:1  
In Saccharomyces cerevisiae, Rad52 protein plays an essential role in the repair of DNA double-stranded breaks (DSBs). Rad52 and its orthologs possess the unique capacity to anneal single-stranded DNA (ssDNA) complexed with its cognate ssDNA-binding protein, RPA. This annealing activity is used in multiple mechanisms of DSB repair: single-stranded annealing, synthesis-dependent strand annealing, and cross-over formation. Here we report that the S. cerevisiae DNA strand exchange protein, Rad51, prevents Rad52-mediated annealing of complementary ssDNA. Efficient inhibition is ATP-dependent and involves a specific interaction between Rad51 and Rad52. Free Rad51 can limit DNA annealing by Rad52, but the Rad51 nucleoprotein filament is even more effective. We also discovered that the budding yeast Rad52 paralog, Rad59 protein, partially restores Rad52-dependent DNA annealing in the presence of Rad51, suggesting that Rad52 and Rad59 function coordinately to enhance recombinational DNA repair either by directing the processed DSBs to repair by DNA strand annealing or by promoting second end capture to form a double Holliday junction. This regulation of Rad52-mediated annealing suggests a control function for Rad51 in deciding the recombination path taken for a processed DNA break; the ssDNA can be directed to either Rad51-mediated DNA strand invasion or to Rad52-mediated DNA annealing. This channeling determines the nature of the subsequent repair process and is consistent with the observed competition between these pathways in vivo.  相似文献   

18.
Helicases move on DNA via an ATP binding and hydrolysis mechanism coordinated by well-characterized helicase motifs. However, the translocation along single-stranded DNA (ssDNA) and the strand separation of double-stranded (dsDNA) may be loosely or tightly coupled. Dda is a phage T4 SF1B helicase with sequence homology to the Pif1 family of helicases that tightly couples translocation to strand separation. The crystal structure of the Dda-ssDNA binary complex reveals a domain referred to as the "pin" that was previously thought to remain static during strand separation. The pin contains a conserved phenylalanine that mediates a transient base-stacking interaction that is absolutely required for separation of dsDNA. The pin is secured at its tip by protein-protein interactions through an extended SH3 domain thereby creating a rigid strut. The conserved interface between the pin and the SH3 domain provides the mechanism for tight coupling of translocation to strand separation.  相似文献   

19.
The Gp59 protein of bacteriophage T4 plays critical roles in recombination-dependent DNA replication and repair by correctly loading the replicative helicase, Gp41, onto recombination intermediates. Previous work demonstrated that Gp59 is required to load helicase onto single-stranded DNA that is saturated with Gp32, the T4 single-stranded DNA (ssDNA)-binding protein. Gp59 and Gp32 bind simultaneously to ssDNA, forming a Gp59-Gp32-ssDNA complex that is a key intermediate in helicase loading. Here we characterize the assembly and dynamics of this helicase loading complex (HLC) through changes in the fluorescent states of Gp32F, a fluorescein-Gp32 conjugate. Results show that HLC formation requires a minimum Gp32-ssDNA cluster size and that Gp59 co-localizes with Gp32-ssDNA clusters in the presence of excess free ssDNA. These and other results indicate that Gp59 targets helicase assembly onto Gp32-ssDNA clusters that form on the displaced strand of D-loops, which suggests a mechanism for the rapid initiation of recombination-dependent DNA replication. Helicase loading at the HLC requires ATP binding (not hydrolysis) by Gp41 and results in local remodeling of Gp32 within the HLC. Subsequent ATPase-driven translocation of Gp41 progressively disrupts Gp32-ssDNA interactions. Evidence suggests that Gp59 from the HLC is recycled to promote multiple rounds of helicase assembly on Gp32-ssDNA, a capability that could be important for the restart of stalled replication forks.  相似文献   

20.
We have fabricated double-stranded DNA (dsDNA) microarrays containing unimolecular hairpin dsDNA probes immobilized on glass slides. The unimolecular hairpin dsDNA microarrays were manufactured by four steps: Firstly, synthesizing single-stranded DNA (ssDNA) oligonucleotides with two reverse-complementary sequences at 3' hydroxyl end and an overhang sequence at 5' amino end. Secondly, microspotting ssDNA on glutaraldehyde-derived glass slide to form ssDNA microarrays. Thirdly, annealing two reverse-complementary sequences to form hairpin primer at 3' end of immobilized ssDNA and thus to create partial-dsDNA microarray. Fourthly, enzymatically extending hairpin primer to convert partial-dsDNA microarrays into complete-dsDNA microarray. The excellent efficiency and high accuracy of the enzymatic synthesis were demonstrated by incorporation of fluorescently labeled dUTPs in Klenow extension and digestion of dsDNA microarrays with restriction endonuclease. The accessibility and specificity of the DNA-binding proteins binding to dsDNA microarrays were verified by binding Cy3-labeled NF-kappaB to dsDNA microarrays. The dsDNA microarrays have great potential to provide a high-throughput platform for investigation of sequence-specific DNA/protein interactions involved in gene expression regulation, restriction and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号