首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parvalbumins are a class of calcium-binding proteins characterized by the presence of several helix-loop-helix (EF-hand) motifs. It is suspected that these proteins evolved via intragene duplication from a single EF-hand. Silver hake parvalbumin (SHPV) consists of three EF-type helix-loop-helix regions, two of which have the ability to bind calcium. The three helix-loop-helix motifs are designated AB, CD, and EF, respectively. In this study, native silver hake parvalbumin isoform B (SHPV-B) has been sequenced by mass spectrometry. The sequence indicates that this parvalbumin is a beta-lineage parvalbumin. SHPV-B was cleaved into two major fragments, consisting of the ABCD and EF regions of the native protein. The 33-amino acid EF fragment (residues 76-108), containing one of the calcium ion binding sites in native SHPV-B, has been isolated and studied for its structural characteristics, ability to bind divalent and trivalent cations, and for its propensity to undergo metal ion-induced self-association. The presence of Ca2+ does not induce significant secondary structure in the EF fragment. However, NMR and CD results indicate significant secondary structure promotion in the EF fragment in the presence of the higher charge-density trivalent cations. Sedimentation equilibrium analysis results show that the EF fragment exists in a monomer-dimer equilibrium when complexed with La3+.  相似文献   

2.
Relative to other parvalbumin isoforms, the mammalian beta-parvalbumin (oncomodulin) displays attenuated divalent ion affinity. High-resolution structural data for the Ca(2+)-bound protein have provided little insight into the physical basis for this behavior, prompting an examination of the unliganded state. This article describes the solution structure and peptide backbone dynamics of Ca(2+)-free rat beta-parvalbumin (beta-PV). Ca(2+) removal evidently provokes significant structural alterations. Interaction between the D helix and the AB domain in the Ca(2+)-bound protein is greatly diminished in the apo-form, permitting the D helix to straighten. There is also a significant reorganization of the hydrophobic core and a concomitant remodeling of the interface between the AB and CD-EF domains. These modifications perturb the orientation of the C and D helices, and the energetic penalty associated with their reversal could contribute to the low-affinity signature of the CD site. By contrast, Ca(2+) removal causes a comparatively minor perturbation of the E and F helices, consistent with the more typical divalent ion affinity observed for the EF site. Ca(2+)-free rat beta-PV retains structural rigidity on the picosecond-nanosecond timescale. At 20 degrees C, the majority of amide vectors show no evidence for motion on timescales above 20 ps, and the average order parameter for the entire molecule is 0.92.  相似文献   

3.
Mammals express two parvalbumins-an alpha isoform and a beta isoform. In rat, the alpha-parvalbumin (alpha-PV) exhibits superior divalent ion affinity. For example, the standard free energies for Ca2+ binding differ by 5.5 kcal/mol in 0.15 M KCl (pH 7.4). High-resolution structures of the Ca2+-bound proteins provide little insight into this disparity, prompting a structural analysis of the apo-proteins. A recent analysis of rat beta-PV suggested that Ca2+ removal provokes substantial conformational changes-reorientation of the C, D, and E helices; reorganization of the hydrophobic core; reduced interdomain contact; and remodeling of the AB domain. The energetic penalty attendant to reversing these changes, it was suggested, could contribute to the attenuated divalent ion-binding signature of that protein. That hypothesis is supported by data presented herein, describing the solution structure and peptide backbone dynamics of Ca2+-free rat alpha-PV. In marked contrast to rat beta-PV, the apo- and Ca2+-loaded forms of the rat alpha isoform are quite similar. Significant structural differences appear to be confined to the loop regions of the molecule. This finding implies that the alpha-PV isoform enjoys elevated divalent ion affinity because the metal ion-binding events do not require major structural rearrangement and the concomitant sacrifice of binding energy.  相似文献   

4.
The structure of carp muscle calcium-binding parvalbumin has been refined to an overall residual, (Σ¦F0 − Fc¦Σ¦F0¦), of 0.25 by a combination of model building and difference Fourier analyses. The atomic positions were allowed to vary up to 0.25 Å from their idealized positions; individual temperature factors ranged from 2 to 150; and 138 solvent peaks were included in this final structure factor calculation. The effects of varying these parameters were analyzed. The treatment of low-order reflections and the influence of solvent have been analyzed in terms of Babinet's principle. These procedures and results are applicable to other protein refinement problems. The errors in co-ordinates are estimated to range from 0.15 Å for the Ca2+ ions to 0.30 Å for internal side chain atoms.A van der Waals' radii study indicates that 42% of the crystal volume is occupied by solvent. There are 16 intermolecular contacts. Of the 108 main chain peptide hydrogen atoms, 15 are neither in contact with solvent nor involved in hydrogen bonds. These “lost” hydrogen bonds are considered to be important to the proposed model of function.  相似文献   

5.
The highly stable Ca2+ binding protein, parvalbumin, is prevalent in fish white muscle tissue. The properties of this protein make it a promising antigen for use as a specific biomarker for fish identification. Parvalbumin was purified from white muscle of an adult common snook Centropomus undecimalis using ammonium sulfate precipitation, size-exclusion chromatography (SEC) and anion-exchange HPLC. Parvalbumins were characterized by the presence of an 11-kDa band following gradient-SDS gel electrophoresis and by their immunoreactivity against mouse anti-parvalbumin antibodies. Anion-exchange chromatography of the parvalbumin fraction separated from the SEC column yielded nine fractions. Subsequent analysis of these fractions by isoelectric focusing gel electrophoresis led to a total of seven parvalbumin isotypes, which may lend themselves as biomarkers in fish identification. The presence of these seven parvalbumin isotypes was confirmed independently by reversed-phase HPLC. A dilution endpoint immunoassay was developed for C. undecimalis parvalbumin using a monoclonal antibody directed against its highly conserved calcium binding site. The utility of parvalbumin isotype distribution and specific monoclonal antibodies against fish parvalbumin in species identification is discussed.  相似文献   

6.
Calsensin is an EF-hand calcium-binding protein expressed by a subset of peripheral sensory neurons that fasciculate into a single tract in the leech central nervous system. Calsensin is a 9-kD protein with two EF-hand calcium-binding motifs. Using multidimensional NMR spectroscopy we have determined the solution structure and backbone dynamics of calcium-bound Calsensin. Calsensin consists of four helices forming a unicornate-type four-helix bundle. The residues in the third helix undergo slow conformational exchange indicating that the motion of this helix is associated with calciumbinding. The backbone dynamics of the protein as measured by (15)N relaxation rates and heteronuclear NOEs correlate well with the three-dimensional structure. Furthermore, comparison of the structure of Calsensin with other members of the EF-hand calcium-binding protein family provides insight into plausible mechanisms of calcium and target protein binding.  相似文献   

7.
The crystal structure of n-dodecylphosphorylcholine (n-C12PC)–bovine pancreas phospholipase A2 (PLA2) complex provided the following structural.characteristics: (1) the dodecyl chain of n-C12PC was located at the PLA2 N -terminal helical region by hydrophobic interactions, which corresponds to the binding pocket of 2-acyl fatty acid chain (β-chain) of the substrate phospholipid, (2) the region from Lys-53 to Lys-56 creates a cholinereceiving pocket of n-C12PC and (3) the N-termillal group of Ala-1 shifts significantly toward the Tyr-52 OH group by the binding of the n-C12PC inhibitor. Since the accuracy of the X-ray analysis (R = 0.275 at 2.3 Å resolution) was insufficient to establish these important X-ray insights, the complex structure was further investigated through the molecular dynamics (M D) simulation, assuming a system in aqueous solution at 310K. The M D simulation covering 176 ps showed that the structural characteristics observed by X-ray analysis are intrinsic and also stable in the dynamic state. Furthermore, the M D simulation made clear that the PLA2 binding pocket is large enough to permit the conformational fluctuation of the n-C12PC hydrocarbon chain. © 1994 Wiley-Liss, Inc. © 1994 Wiley-Liss, Inc.  相似文献   

8.
9.
The folding of a polypeptide from an extended state to a well-defined conformation is studied using microsecond classical molecular dynamics (MD) simulations and replica exchange molecular dynamics (REMD) simulations in explicit solvent and in vacuo. It is shown that the solvated peptide folds many times in the REMD simulations but only a few times in the conventional simulations. From the folding events in the classical simulations we estimate an approximate folding time of 1-2 micros. The REMD simulations allow enough sampling to deduce a detailed Gibbs free energy landscape in three dimensions. The global minimum of the energy landscape corresponds to the native state of the peptide as determined previously by nuclear magnetic resonance (NMR) experiments. Starting from an extended state it takes about 50 ns before the native structure appears in the REMD simulations, about an order of magnitude faster than conventional MD. The calculated melting curve is in good qualitative agreement with experiment. In vacuo, the peptide collapses rapidly to a conformation that is substantially different from the native state in solvent.  相似文献   

10.
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin‐lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4‐hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius‐type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force‐field (termed as AMBER99SB‐ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Major histocompatibility complex (MHC) II proteins bind peptide fragments derived from pathogen antigens and present them at the cell surface for recognition by T cells. MHC proteins are divided into Class I and Class II. Human MHC Class II alleles are grouped into three loci: HLA-DP, HLA-DQ, and HLA-DR. They are involved in many autoimmune diseases. In contrast to HLA-DR and HLA-DQ proteins, the X-ray structure of the HLA-DP2 protein has been solved quite recently. In this study, we have used structure-based molecular dynamics simulation to derive a tool for rapid and accurate virtual screening for the prediction of HLA-DP2-peptide binding. A combinatorial library of 247 peptides was built using the "single amino acid substitution" approach and docked into the HLA-DP2 binding site. The complexes were simulated for 1 ns and the short range interaction energies (Lennard-Jones and Coulumb) were used as binding scores after normalization. The normalized values were collected into quantitative matrices (QMs) and their predictive abilities were validated on a large external test set. The validation shows that the best performing QM consisted of Lennard-Jones energies normalized over all positions for anchor residues only plus cross terms between anchor-residues.  相似文献   

12.
A refinement protocol based on physics‐based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge‐based or implicit membrane‐based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid‐facing residues. Scoring with knowledge‐based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane‐based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models.  相似文献   

13.
The feeding ecology of the larvae of silver hake Merluccius bilinearis was examined during two time periods (October 1998 and December 1992) on the Western Bank, Scotian Shelf, north‐west Atlantic, and compared with the feeding ecology of Atlantic cod Gadus morhua larvae collected in the same samples in December 1992. During both time periods silver hake exhibited strong selection for late stage copepodids and adult copepods at a small size (>3·5 mm total length, L T). The niche width measured as the diet breadth index ( I DB) of silver hake declined rapidly as they increased in size and remained relatively constant from 3 to 11 mm L T, during each time period. Atlantic cod larvae exhibited a broader niche width that was curvilinear over the same L T. Atlantic cod were also less selective than silver hake, incorporating both naupliar and early stage copepodids in their diets throughout the length classes examined. Simple isometric relationships did not explain the differences in diet, as Atlantic cod larvae continued to feed on early stages of copepods at large size, while silver hake larvae quickly switched to large prey items. The strong selection and narrow I DB observed for silver hake probably reflects adaptation to spawning during the periods between major secondary production peaks in temperate waters.  相似文献   

14.
The use of organic solvents as reaction media for enzymatic reactions has many advantages. Several organic solvents have been proposed as reaction media, especially for transesterifications using Candida antarctica lipase B (CalB). Among organic solvents, tert-butanol is associated with an enhanced conversion rate in bio-diesel production. Thus, it is necessary to understand the effect of tert-butanol on CalB to explain the high-catalytic efficiency compared with the reaction in other hydrophilic organic solvents. In this study, the effects of tert-butanol on the structure of CalB were investigated by MD simulations. The overall flexibility was increased in the presence of tert-butanol. The substrate entrance and the binding pocket size of CalB in tert-butanol were maintained as in TIP3P water. The distance between the catalytic residues of CalB in tert-butanol indicated a higher likelihood of forming hydrogen bonds. These structural analyses could be useful for understanding the effect of tert-butanol on lipase transesterification.  相似文献   

15.
16.
The structural features of human eIF4E were investigated by X-ray crystal analyses of its cap analog (m(7)GTP and m(7)GpppA) complexes and molecular dynamics (MD) simulations of cap-free and cap-bound eIF4Es, as well as the cap-bound Ser209-phosphorylated eIF4E. Crystal structure analyses at 2.0 A resolution revealed that the molecule forms a temple-bell-shaped surface of eight antiparallel beta-structures, three alpha-helices and ten loop structures, where the N-terminal region corresponds to the handle of the bell. This concave backbone provides a scaffold for the mRNA cap-recognition pocket consisting of three receiving parts for the 5'-terminal m(7)G base, the triphosphate, and the second nucleotide. The m(7)G base is sandwiched between the two aromatic side-chains of Trp102 and Trp56. The two (m(7)G)NH-O (Glu103 carboxy group) hydrogen bonds stabilize the stacking interaction. The basic residues of Arg157 and Lys162 and water molecules construct a binding pocket for the triphosphate moiety, where a universal hydrogen-bonding network is formed. The flexible C-terminal loop region unobserved in the m(7)GTP complex was clearly observed in the m(7)GpppA complex, as a result of the fixation of this loop by the interaction with the adenosine moiety, indicating the function of this loop as a receiving pocket for the second nucleotide. On the other hand, MD simulation in an aqueous solution system revealed that the cap-binding pocket, especially its C-terminal loop structure, is flexible in the cap-free eIF4E, and the entrance of the cap-binding pocket becomes narrow, although the depth is relatively unchanged. SDS-PAGE analyses showed that this structural instability is highly related to the fast degradation of cap-free eIF4E, compared with cap-bound or 4E-BP/cap-bound eIF4E, indicating the conferment of structural stability of eIF4E by the binary or ternary complex formation. MD simulation of m(7)GpppA-bound Ser209-phosphorylated eIF4E showed that the size of the cap-binding entrance is dependent on the ionization state in the Ser209 phosphorylation, which is associated with the regulatory function through the switching on/off of eIF4E phosphorylation.  相似文献   

17.
Janosi L  Keer H  Cogdell RJ  Ritz T  Kosztin I 《Proteins》2011,79(7):2306-2315
Most of the currently known light‐harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like “what factors govern the LH2 ring size?” and “are there other ring sizes possible?” remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8‐ring from Rs. moliscianum (MOLI) and a 9‐ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8‐, 9‐, and 10‐ring geometries. After inserting each of the dimers into a lipid‐water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9‐ring, while MOLI is more likely to form an 8‐ring than a 9‐ring. Finally, we discuss both the merits and limitations of all three prediction methods. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

18.
A tetrameric [Ag(μ-3,5-tBu2pz)]4 · CH2Cl2 (1 · CH2Cl2) has been prepared and structurally characterized. The four Ag-atoms are in an approximate rhombic arrangement with pyrazolato bridges alternating on either side of the Ag4-plane. A 1H NMR study shows partial decomposition of 1 to the mononuclear [Ag(3,5-tBu2pzH)2]+ in solution.  相似文献   

19.
Several crystal structures of parvalbumin (Parv), a typical EF-hand protein, have been reported so far for different species with the best resolution achieving 1.5 A. Using a crystal grown under microgravity conditions, cryotechniques (100 K), and synchrotron radiation, it has now been possible to determine the crystal structure of the fully Ca2+-loaded form of pike (component pI 4.10) Parv.Ca2 at atomic resolution (0.91 A). The availability of such a high quality structure offers the opportunity to contribute to the definition of the validation tools useful for the refinement of protein crystal structures determined to lower resolution. Besides a better definition of most of the elements in the protein three-dimensional structure than in previous studies, the high accuracy thus achieved allows the detection of well-defined alternate conformations, which are observed for 16 residues out of 107 in total. Among them, six occupy an internal position within the hydrophobic core and converge toward two small buried cavities with a total volume of about 60 A3. There is no indication of any water molecule present in these cavities. It is probable that at temperatures of physiological conditions there is a dynamic interconversion between these alternate conformations in an energy-barrier dependent manner. Such motions for which the amplitudes are provided by the present study will be associated with a time-dependent remodeling of the void internal space as part of a slow dynamics regime (millisecond timescales) of the parvalbumin molecule. The relevance of such internal dynamics to function is discussed.  相似文献   

20.
The three-dimensional solution structures of proteins determinedwith NMR-derived constraints are almost always calculated in vacuo. Thesolution structure of (Ca2+)_2-calbindinD9k has been redetermined by new restrained molecular dynamics(MD) calculations that include Ca2+ ions and explicit solventmolecules. Four parallel sets of MD refinements were run to provide accuratecomparisons of structures produced in vacuo, in vacuo withCa2+ ions, and with two different protocols in a solvent bathwith Ca2+ ions. The structural ensembles were analyzed interms of structural definition, molecular energies, packing density,solvent-accessible surface, hydrogen bonds, and the coordination of calciumions in the two binding loops. Refinement including Ca2+ ionsand explicit solvent results in significant improvements in the precisionand accuracy of the structure, particularly in the binding loops. Theseresults are consistent with results previously obtained in free MDsimulations of proteins in solution and show that the rMD refinedNMR-derived solution structures of proteins, especially metalloproteins, canbe significantly improved by these strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号