首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The present study was performed to analyze in detail gender- and site-related alterations in the adrenergic signal transduction pathway of lipolysis in fat cells isolated from subcutaneous abdominal and visceral fat depots from severely obese patients. The study group consisted of 30 morbidly obese subjects (9 men and 21 women) aged 41.1+/-1.9 years, with a body mass index (BMI) of 54.7+/-1.7 kg/m2, who had undergone abdominal surgery. Protein levels of hormone-sensitive lipase (HSL) and adrenergic receptors (AR), as well as HSL activity and the lipolytic response to adrenergic agents were analyzed. Both fat depots had similar basal lipolysis, but the capacity of catecholamines to activate lipolysis was greater in visceral fat, both at AR and postreceptor levels. Basal lipolysis and lipolytic activity induced by dibutyryl cyclic AMP were higher in men than in women. However, the visceral depot of women showed a higher maximal stimulation by noradrenaline than that of men, in accordance with higher beta1- and beta3-AR protein levels. In conclusion, the main gender-related differences were located in the visceral depot, with women exhibiting a higher sensitivity to catecholamines associated with an increased provision of beta-AR, while men showed an enhanced lipolytic capacity at the postreceptor level.  相似文献   

2.
The purpose of this investigation was to explore interactions between adrenergic stimulation, glucocorticoids, and insulin on the lipolytic rate in isolated human adipocytes from subcutaneous and omental fat depots, and to address possible sex differences. Fat biopsies were obtained from 48 nondiabetic subjects undergoing elective abdominal surgery. Lipolysis rate was measured as glycerol release from isolated cells and proteins involved in lipolysis regulation were assessed by immunoblots. Fasting blood samples were obtained and metabolic and inflammatory variables were analyzed. In women, the rate of 8-bromo-cAMP- and isoprenaline-stimulated lipolysis was approximately 2- and 1.5-fold higher, respectively, in subcutaneous compared to omental adipocytes, whereas there was no difference between the two depots in men. Dexamethasone treatment increased the ability of 8-bromo-cAMP to stimulate lipolysis in the subcutaneous depot in women, but had no consistent effects in fat cells from men. Protein kinase A, Perilipin A, and hormone sensitive lipase content in adipocytes was not affected by adipose depot, sex, or glucocorticoid treatment. In conclusion, catecholamine and glucocorticoid regulation of lipolysis in isolated human adipocytes differs between adipose tissue depots and also between sexes. These findings may be of relevance for the interaction between endogenous stress hormones and adipose tissue function in visceral adiposity and the metabolic syndrome.  相似文献   

3.
The ability of catecholamines to maximally stimulate adipocyte lipolysis (lipolytic capacity) is decreased in obesity. It is not known whether the lipolytic capacity is determined by the ability of adipocytes to differentiate. The aim of the study was to investigate if lipolytic capacity is related to preadipocyte differentiation and if the latter can predict lipolysis in mature adipocytes. IN VITRO experiments were performed on differentiating preadipocytes and isolated mature adipocytes from human subcutaneous adipose tissue. In preadipocytes, noradrenaline-induced lipolysis increased significantly until terminal differentiation (day 12). However, changes in the expression of genes involved in lipolysis (hormone sensitive lipase, adipocyte triglyceride lipase, the alpha2-and beta1-adrenoceptors, perilipin, and fatty acid binding protein) reached a plateau much earlier during differentiation (day 8). A significant positive correlation between lipolysis in differentiated preadipocytes and mature adipocytes was observed for noradrenaline (r=0.5, p<0.01). The late differentiation capacity of preadipocytes measured as glycerol-3-phosphate dehydrogenase activity was positively correlated with noradrenaline-induced lipolysis in preadipocytes (r=0.51, p<0.005) and mature fat cells (r=0.35, p<0.05). In conclusion, intrinsic properties related to terminal differentiation determine the ability of catecholamines to maximally stimulate lipolysis in fat cells. The inability to undergo full differentiation might in part explain the low lipolytic capacity of fat cells among the obese.  相似文献   

4.
Adipose tissue lipolysis, i.e., the catabolic process leading to the breakdown of triglycerides into fatty acids and glycerol, is often considered as a simple and well-understood metabolic pathway. However, progress on the hormonal regulation and molecular mechanism of fat-cell lipolysis is opening new avenues and points to a number of unanswered questions. Recent studies on the lipolytic beta- and antilipolytic alpha2-adrenergic control of lipolysis has allowed a better understanding of the relative contribution of the two types of receptors and provide strong evidence for the in vivo implication of alpha2-adrenoceptors in the physiological control of subcutaneous adipose-tissue lipolysis. A novel lipolytic system has been characterized in human fat cells. Natriuretic peptides stimulate lipolysis through a cGMP-dependent pathway. The molecular details of the lipolytic reaction are not fully understood. Translocation of hormone-sensitive lipase, the rate-limiting enzyme of lipolysis, to the lipid droplet seems to be an important step during lipolytic activation. Reorganization of the lipid droplet coating by perilipins may also facilitate the access of the enzyme. Unexpectedly, hormone-sensitive lipase-deficient mice are not obese and show residual adipose-tissue lipolysis, which suggests the existence of another triglyceride lipase. Whether the expression of this uncharacterized neutral lipase is compensatory for the lack of hormone-sensitive lipase is an important question yet to be resolved. In humans, alterations of hormone-sensitive lipase expression are associated with changes in lipolysis in various physiological and pathological states. Genetic studies show that beta2-adrenoceptor and hormone-sensitive lipase genes may participate in the polygenic background of obesity.  相似文献   

5.
PURPOSE OF REVIEW: The aim of this article is to describe the relative roles of hormone sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis. RECENT FINDINGS: Until recently, only hormone sensitive lipase was considered important for the regulation of lipolysis within fat cells. Recent rodent studies have suggested that adipose triglyceride lipase may, however, be more important. The few human adipose triglyceride lipase studies that have been published point to species differences between humans and rodents. Selective inhibition of hormone sensitive lipase in human fat cells completely counteracts hormone-activated lipolysis, though there is a considerable (>50%) residual nonhormonal (basal) lipolysis. In rodents, adipose triglyceride lipase enzyme activity is stimulated by a cofactor termed CGI-58. In the absence of CGI-58, lipase activity in fat cells is much higher for hormone sensitive lipase than adipose triglyceride lipase. Hormone sensitive lipase expression is regulated by obesity and body weight reduction (decreased and increased, respectively), but this is not the case for adipose triglyceride lipase. A role of adipose triglyceride lipase in human lipolysis is suggested by studies of gene polymorphisms. SUMMARY: Two lipases the 'old' hormone sensitive lipase and the 'new' adipose triglyceride lipase are of importance for the regulation of lipolysis in rodent fat cells. In humans, adipose triglyceride lipase seems essential for maintaining basal lipolytic activity, while hormone sensitive lipase is the enzyme most responsive to stimulated lipolysis.  相似文献   

6.
Hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) regulate adipocyte lipolysis in rodents. The purpose of this study was to compare the roles of these lipases for lipolysis in human adipocytes. Subcutaneous adipose tissue was investigated. HSL and ATGL protein expression were related to lipolysis in isolated mature fat cells. ATGL or HSL were knocked down by RNA interference (RNAi) or selectively inhibited, and effects on lipolysis were studied in differentiated preadipocytes or adipocytes derived from human mesenchymal stem cells (hMSC). Subjects were all women. There were 12 lean controls, 8 lean with polycystic ovary syndrome (PCOS), and 27 otherwise healthy obese subjects. We found that norepinephrine-induced lipolysis was positively correlated with HSL protein levels (P < 0.0001) but not with ATGL protein. Women with PCOS or obesity had significantly decreased norepinephrine-induced lipolysis and HSL protein expression but no change in ATGL protein expression. HSL knock down by RNAi reduced basal and catecholamine-induced lipolysis. Knock down of ATGL decreased basal lipolysis but did not change catecholamine-stimulated lipolysis. Treatment of hMSC with a selective HSL inhibitor during and/or after differentiation in adipocytes reduced basal lipolysis by 50%, but stimulated lipolysis was inhibited completely. In contrast to findings in rodents, ATGL is of less importance than HSL in regulating catecholamine-induced lipolysis and cannot replace HSL when this enzyme is continuously inhibited. However, both lipases regulate basal lipolysis in human adipocytes. ATGL expression, unlike HSL, is not influenced by obesity or PCOS.  相似文献   

7.
Decreased lipolytic effect of catecholamines in adipose tissue has repeatedly been demonstrated in obesity and may be a cause of excess accumulation of body fat. However, the mechanisms behind this lipolysis defect are unclear. The role of hormone-sensitive lipase was examined using abdominal subcutaneous adipocytes from 34 obese drug-free and otherwise healthy males or females and 14 non-obese control subjects. The enzyme catalyzes the rate-limiting step of the lipolysis pathway. The maximum lipolytic capacity of fat cells was significantly decreased in obesity when measured using either a non-selective beta-adrenergic receptor agonist (isoprenaline) or a phosphodiesterase resistant cyclic AMP analogue (dibutyryl cyclic AMP). Likewise, enzyme activity, protein expression, and mRNA of hormone-sensitive lipase were significantly decreased in adipocytes of obese subjects. The findings were not influenced by age or gender. The data suggest that a decreased expression of hormone-sensitive lipase in subcutaneous fat cells, which in turn causes decreased enzyme function and impaired lipolytic capacity of adipocytes, is present in obesity. Impaired expression of the hormone-sensitive lipase gene might at least in part explain the enzyme defect.  相似文献   

8.
Growth hormone (GH) has a lipolytic effect in adipose tissue but this effect may differ in adipose tissue from various fat depots. This latter possibility was investigated in the present study, in which the effects of GH in vivo on catecholamine-induced lipolysis and the number of β-adrenergic receptors in isolated adipocytes from different fat depots of hypophysectomized rats were investigated. Female and male Sprague-Dawley rats were hypophysectomized or sham-operated at 45 days of age. One week after the operation, hormonal replacement therapy with L-thyroxine and hydrocortisone acetate was given. In addition, groups of rats were treated with GH (1.33 mg/kg per day, given as two daily subcutaneous injections). After 1 week of hormonal treatment, adipocytes were isolated from the parametrial, epididymal and inguinal fat pads, and glycerol release after catecholamine-stimulation and 125I-cyanopindolol binding were measured. Hypophysectomy resulted in a marked decrease in the lipolytic response to catecholamines. GH treatment significantly increased catecholamine-induced lipolysis with similar effects in adipocytes from parametrial or epididymal and inguinal fat depots in both female and male rats. There were no differences between norepinephrine compared with isoproterenol-induced responses. 125I-cyanopindolol binding was reduced after hypophysectomy and normalized by GH treatment, without differences between parametrial and inguinal adipose tissue regions. We conclude that the lipolytic effects of GH in the rat may partly be mediated by a stimulatory effect on β-adrenergic receptors in adipocytes. In addition, GH exerted similar effect on catecholamine-induced lipolysis and β-adrenergic receptors in adipocytes from parametrial, epididymal and inguinal fat depots.  相似文献   

9.
Intraabdominal fat in humans is located in two major depots, the omental and mesenteric. We compared basal and stimulated lipolysis in adipose tissue from these two depots and the subcutaneous abdominal depot of obese women and men. Omental fat cells of women are smaller and have lower rates of basal lipolysis than in men. Basal Iipolysis rates are significantly higher in subcutaneous than intraabdominal adipose tissues of both genders. In men, the incremental lipolytic response to norepinephrine is significantly greater in both intraabdominal fat depots than in the subcutaneous fat, while in women tlie response of tlie mesenteric is lower than tlie omental. In women, but not men, responsiveness to tlie beta agonist isoproterenol is also increased in omental tissue. Thus, in women, omental and mesenteric adipose tissues show distinctly different metabolic properties which may moderate the impact of intraabdominal obesity.  相似文献   

10.
Objective: Abdominal subcutaneous adipose tissue (SAT) occurs in two depots separated by a fascial plane: deep SAT and superficial SAT. In a recent study it was demonstrated that the amount of deep SAT has a much stronger relationship to insulin resistance than does superficial SAT. Because insulin resistance may be related to fatty acid release from adipose tissue, we hypothesized that the two SAT depots may have a different lipolytic activity. Research Methods and Procedures: To test this hypothesis, we obtained samples of deep and superficial SAT from patients undergoing elective abdominal surgery. The rate of lipolysis was determined in the collagenase‐digested adipocytes obtained from the two fat depots by measuring glycerol release in the presence and absence of isoproterenol. In addition, the relative concentration of hormone‐sensitive lipase was determined in both SAT depots by Western blot analysis. Results: Our results showed that the rate of isoproterenol‐stimulated lipolysis was ~20% higher in cells from deep SAT compared with those from superficial SAT, indicating that the deep SAT is more lipolytically active. The concentration of hormone‐sensitive lipase did not differ between the two adipose tissue depots. Discussion: These findings suggest that the higher lipolytic activity of deep SAT may account for its stronger association with insulin resistance. The mechanism seems to be independent of differences in hormone‐sensitive lipase concentration.  相似文献   

11.
The amount of fatty acid release by a fat cell homogenate without pretreatment with epinephrine was found to be slightly more than that released from fat cells by epinephrine, suggesting that fat cells contain high lipolytic activity even in the absence of lipolytic agents. Fat cells contain high hormone-sensitive lipase activity (1383 mumole free fatty acids/g/hr) in the absence of epinephrine, and addition of epinephrine to the cells did not increase the activity, significantly. Like epinephrine, DBcAMP and/or theophylline also elicited marked release of glycerol from fat cells without activating the hormone-sensitive lipase activity. However, although fat cells contain a large amount of hormone-sensitive lipase, lipolysis was negligible in the absence of these lipolytic agents. These results suggest that lipolytic agents such as epinephrine, DBcAMP, and theophylline induce lipolysis in fat cells through some mechanism other than activation of hormone-sensitive lipase and that in the absence of lipolytic agents, some system in fat cells inhibits lipolysis of endogenous lipid droplets by hormone-sensitive lipase. The lipid droplets in fat cells consist mainly of triglyceride with phospholipids, cholesterol, carbohydrate, and protein as minor constituents. The phospholipid fraction was found to consist of 75% phosphatidylcholine and 25% phosphatidylethanolamine. Of the minor constituents of endogenous lipid droplets, only phosphatidylcholine strongly inhibited hormone-sensitive lipase activity in a [3H]triolein emulsion. These results suggest that phosphatidylcholine in endogenous lipid droplets may be responsible for inhibition of hormone-sensitive lipase. Then, a cell-free system was established in which epinephrine, DBcAMP, and theophylline stimulated lipolysis of endogenous lipid droplets from fat cells by lipase solution. In this system, these lipolytic agents did not induce lipolysis in the absence of added lipase. Lipolysis in the mixture of the endogenous lipid droplets and lipase solution was accelerated by phospholipase C with concomitant loss of epinephrine-induced lipolysis. After pretreatment of the endogenous lipid droplets with phospholipase C, these lipolytic agents no longer induced lipolysis. Pretreatment of the endogenous lipid droplets with phospholipase C reduced their phospholipid content with the formation of phosphorylcholine, but did not affect their triglyceride and cholesterol contents. Treatment of the endogenous lipid droplets with phospholipase D did not affect lipolysis in the cell-free system. These results suggest that phosphatidylcholine in the endogenous lipid droplets may inhibit their lipolysis by hormone-sensitive lipase in fat cells and also be involved in the mechanisms of the stimulatory effects of epinephrine, DBcAMP, and theophylline on lipolysis.  相似文献   

12.
Lipolytic activity of human isolated fat cells from different fat deposits was studied. The purpose of the present investigations was to determine the epinephrine responsiveness, with regard to alpha- and beta-adrenergic receptor site activity, of omental and subcutaneous adipocytes (abdominal or from the lateral part of the thigh). Adipocytes were obtained from normal subjects or from obese subjects on iso- or hypocaloric diets. The lipolytic effect of epinephrine varied according to the fat deposits, while the beta-lipolytic effect of isoproterenol was more stable (Fig. 1). We explored the possible involvement of adrenergic alpha-receptors, in order to explain these results. The potentiating action of phentolamine on epinephrine-induced lipolysis, and the antilipolytic effect of alpha-agonists on basal or theophylline--induced lipolysis, were found to be a good indication of alpha-adrenergic activity. The alpha-adrenergic antilipolytic effect was most prominent in adipose tissue from the lateral part of the thigh, and less noticeable in omental adipocytes. In conclusion, the inability of epinephrine to induce lipolysis, and the epinephrine-induced inhibition of lipolysis observed when the basal rate of FFA release was spontaneously increased in subcutaneous fat-cells of the thigh, could be explained by an increased alpha adrenergic responsiveness (Fig. 2). Moreover, various alpha-adrenergic agonists (phenylephrine, noradrenaline and adrenaline) showed a clear inhibiting effect on theophylline-stimulated adipocytes from the thigh. The pharmacological study of the antilipolytic effect of epinephrine on theophylline-induced lipolysis showed that the inhibition was linked to a specific stimulation of the alpha-receptors of the subcutaneous adipocytes (Fig. 4). From the different sets of experiments, it is shown that the modifications in the lipolytic effect of epinephrine on adipocytes of different areas could be explained by the occurrence of a variable alpha-adrenergic effect initiated by catecholamine. Furthermore, theophylline stimulation of lipolysis provides an accurate system to investigate the alpha-inhibiting effect of catecholamines. Our study was completed by the investigation of the lipolytic activity of subcutaneous fat cells from obese subjects submitted to a hypocaloric diet (800-1 000 Cal/day). An increased alpha-inhibitory effect of epinephrine was shown on the increased basal lipolytic activity observed in the fat cells of obese subjects on a hypocaloric diet (Fig. 5); a similar effect was observed when these adipocytes were stimulated by theophylline. To conclude, these investigations allow the alpha-adrenergic effect to be considered as a regulator mechanism of the in vitro lipolytic activity in human adipose tissue, since the antilipolytic effect is operative whenever the basal rate of lipolysis is increased (spontaneously, after caloric restriction, or with a lipolytic agent such as theophylline).  相似文献   

13.
The objective of this work was to study the possible impact of DHEA-S on body fat distribution and the specific action of the hormone on lipolysis from visceral and subcutaneous human adipose tissue. First, a clinical evaluation was performed in 84 obese patients (29 men, 55 women), measuring serum DHEA-S, computed tomography (CT) anthropometric parameters of abdominal fat distribution. In a second experiment, subcutaneous and visceral adipose tissue samples were obtained from 20 obese patients (10 men, 10 women) and cultured in vitro under stimulation with DHEA-S to further assess a possible effect of this hormone on adipose tissue lipolysis. Serum DHEA-S was inversely and specifically associated with visceral fat area (VA) as assessed by CT in men and with waist-to-hip ratio in women. In vitro, DHEA-S increased lipolysis in women's subcutaneous adipose tissue at 2 h, while in men, the effect was evident in visceral tissue and after 24 h of treatment. In conclusion, DHEA-S contributes to gender-related differences in body fat distribution probably by a differential lipolytic action. We have demonstrated for the first time in vitro that DHEA-S stimulates lipolysis preferably in subcutaneous fat in women and in visceral fat in men.  相似文献   

14.
Thyroid dysfunction is associated with several abnormalities in intermediary metabolism, including impairment of lipolytic response to catecholamines in subcutaneous abdominal adipose tissue (SCAAT). Atrial natriuretic peptide (ANP) is a powerful lipolytic peptide; however, the role of ANP-mediated lipolysis in thyroid disease has not been elucidated. The aim of this study was to investigate the role of thyroid hormones in the regulation of ANP-induced lipolysis as well as in the gene expression of hormone-sensitive lipase, phosphodiesterase 3B (PDE3B), uncoupling protein-2 (UCP2), natriuretic peptide receptor type A, and beta(2)-adrenergic receptor in SCAAT of hyperthyroid and hypothyroid patients. Gene expression in SCAAT was studied in 13 hypothyroid and 11 hyperthyroid age-matched women before and 2-4 mo after the normalization of their thyroid status. A microdialysis study was performed on a subset of nine hyperthyroid and 10 hypothyroid subjects. ANP- and isoprenaline-induced lipolyses were higher in hyperthyroid subjects, with no differences between the groups following treatment. Hormone-sensitive lipase gene expression was higher in hyperthyroid compared with hypothyroid subjects before treatment, whereas no difference was observed following treatment. No differences in gene expression of other genes were observed between the two groups. Following treatment, the gene expression of UCP2 decreased in hyperthyroid, whereas the expression of PDE3B decreased in hypothyroid subjects. We conclude that thyroid hormones regulate ANP- and isoprenaline-mediated lipolysis in human SCAAT in vivo. Increased lipolytic subcutaneous adipose tissue response in hyperthyroid patients may involve postreceptor signaling mechanisms.  相似文献   

15.
Beta-adrenergic receptors were characterized in human fat cell membranes using 125I-labeled cyanopindolol (125I-labeled CYP) and highly selective beta 1-antagonists. The iodinated radioligand bound saturably and specifically to a single class of high affinity binding sites. The number of binding sites determined with 125I-labeled CYP closely agreed with that determined with two other tritiated radioligands: [3H]dihydroalprenolol and [3H]CGP-12,177. Since 125I-labeled CYP does not discriminate between beta 1- and beta 2-adrenoceptors, the densities of the two receptor subtypes were determined from the competition curves of 125I-labeled CYP by highly selective beta 1-antagonists (bisoprolol, ICI-89,406, CGP-20,712A, and LK-204,545). Moreover, in order to enable correlation with binding data, the regulation of adenylate cyclase activity and of lipolysis was tested with various beta-agonist and antagonist compounds. The results obtained on fat cell membranes from abdominal subcutaneous adipose tissue demonstrated the following. 1) 125I-labeled CYP represents a valuable tool for the quantification and the delineation of beta-receptor subtypes. 2) The presence of sodium ions in binding buffers causes a modification of the affinity of beta-sites for some beta-antagonists. 3) The human fat cell beta adrenergic receptor population defined by nonselective radioligands is composed of two subtypes that can be interpreted in terms of classic beta 1- and beta 2-adrenergic receptor subtypes as assessed by competition studies with highly selective antagonists; beta 2-sites are predominant (60-70% of 125I-labeled CYP sites) in the adipocytes of slightly overweight women. 4) Results support the idea that beta 1- as well as beta 2-adrenergic receptors are coupled with adenylate cyclase and involved in the induction of lipolysis. 5) The results focus on the interest in some beta 2-agonist drugs (zinterol, clenbuterol) as partial inductors of lipolysis, with the lipolytic efficacies of these compounds being well correlated with their efficacies at 125I-labeled CYP sites.  相似文献   

16.
Neuropeptide Y (NPY) is an orexigenic peptide that plays an essential role in caloric restriction (CR)‐mediated lifespan extension. However, the mechanisms underlying the NPY‐mediated effects in CR are poorly defined. Here, we report that NPY deficiency in male mice during CR increases mortality in association with lipodystrophy. NPY?/? mice displayed a rapid decrease in body weight and fat mass, as well as increased lipolysis during CR. These alterations in fat regulation were inhibited by the lipolysis inhibitor, acipimox, a treatment associated with reduced mortality. The lipolytic/thermogenic signaling, β3‐adrenergic receptor/hormone sensitive lipase, was markedly activated in white adipose tissue of NPY?/? mice compared with that of NPY+/+ mice, and thermogenesis was controlled by NPY under negative energy balance. These results demonstrate the critical role of NPY in the regulation of lipid metabolic homeostasis and survival via control of lipolysis and thermogenesis in a state of negative energy balance.  相似文献   

17.
Objective: The influence of growth hormone (GH) on the regulation of lipolytic response to specific agonists to β‐adrenoceptors and several post‐receptor steps in the lipolytic cascade were investigated. Research Methods and Procedures: Adipose tissues from rats were incubated with or without GH (1.38 nM). After a 24‐hour incubation, isolated adipocytes were prepared for different assays. Rats were hypophysectomized. One week after operation, l‐thyroxine and hydrocortisone acetate was given to hypophysectomized rats. One group of rats was treated with GH (1.33 mg/kg, daily). After 1 week of hormonal treatment, adipose tissues were removed for different studies. Results: GH treatment increased both basal lipolysis and lipolytic sensitivity to dobutamine and CGP 12177 in adipocytes. The lipolytic sensitivity to terbutaline was not influenced by GH treatment. GH treatment increased the maximal lipolytic response to dobutamine and CGP 12177, but not to terbutaline as determined with absolute values of lipolysis. Forskolin‐induced lipolysis was increased by addition of GH to tissues. Moreover, GH treatment resulted in enhanced expression of hormone‐sensitive lipase. GH treatment in hypophysectomized rats influenced neither the expressions of Gαs protein and cholera toxin‐catalyzed adenosine diphosphate‐ribosylation of Gαs protein, nor cholera toxin‐induced 3′, 5′‐cyclic adenosine monophosphate accumulation. However, the expression of Gαi protein was decreased after GH treatment. Discussion: These and previous results suggest that GH increases lipolysis in rat adipocytes partly through the β‐adrenergic system, including increases in both β1‐ and β3‐adrenergic receptor function, and partly through enhanced adenylate cyclase function, and expression of hormone‐sensitive lipase, perhaps via a decrease in Gαi protein expression.  相似文献   

18.
The existence and relative importance of β3-adrenoceptors in man is still controversial. The aim of the present study was 1) to find further evidence for the existence of functional β3-adrenoceptors in human fat, and 2) to investigate factors that may influence this β3-adrenoceptor function. Fifty individuals were examined. Lipolysis mediated by the selective β3-adrenoceptor agonist CGP 12177 in omental fat cells correlated with the response in subcutaneous fat cells. However, lipolysis was more pronounced in omental as compared to subcutaneous adipocytes, the intrinsic activity for CGP 12177 was 41% and 33%, respectively, while dobutamine, terbutaline and norepinephrine were full agonists. Both the lipolytic response and the sensitivity to CGP 12177 correlated with the effects of norepinephrine in the omental fat cells (r2= 0. 68 and 0. 50, respectively, p=0. 0001). The β2-adrenoceptor mediated lipolytic response did also correlate with the responses induced by β1- and β2-agonists and by postreceptor acting agents. The antagonistic properties (pA2) of the β-adrenoceptor subtypes were also investigated. The pA2 for the selective β1- and β2-adrenoceptor antagonists versus CGP 12177-induced lipolysis were 2 to 3 log units lower than those for the β1-antagonist versus dobutamine or for the β2-antagonist versus terbutaline. Furthermore, bupranolol had a significantly better antagonistic effect (pA2 7. 17, p<0. 001) on the CGP 12177-induced lipolysis than had the β1- and β2-adrenoceptor antagonists (pA2 6. 26 and 6. 05, respectively). These data clearly support the existence of a third human β-adrenoceptor. Several factors may contribute to the contradictory β3-adrenoceptor results in man. The sensitivity of the different lipolytic systems vary considerably. Omental fat cells are preferable to subcutaneous cells for β3-adrenoceptor studies in man. The β3-responses are more attenuated in isolated fat cell preparations than in tissue fragments. Furthermore, as the β3-adrenoceptor activity correlates to the norepinephrine activity, more pronounced effects will be expected in catecholamine sensitive subjects. At present, the number of tools available for β3-adrenoceptor studies are limited, and the receptor is hard to study, why it is essential to perform β3-adrenoceptor studies under optimal conditions in order to obtain conclusive effects.  相似文献   

19.
AIM: The aim of this study was to estimate the lipolytic activity of the human growth hormone variant, 20-kD human growth hormone (20K-hGH). METHODS: Obese KV-A(y) mice were given daily subcutaneous injections of 20K-hGH (0.25, 0.5, 1.0 mg/kg), 22K-hGH (0.25 mg/kg) or saline as a control for 2 weeks. Body composition (fat, water and protein), lipolysis and lipoprotein lipase (LPL) activity were measured 24 h after the final injection. RESULTS: Both growth hormone isoforms significantly reduced relative fat pad and whole body lipids. In addition, 20K-hGH produced an inhibition of LPL activity in adipose tissue and stimulated lipolysis in adipocytes. CONCLUSION: These data strongly suggest that inhibition of LPL activity in adipose tissue and stimulation of lipolysis in adipocytes by 20K-hGH treatment reduce adipose tissue mass, resulting in body fat reduction.  相似文献   

20.
In obesity, there is an increase in reactive oxygen species (ROS) within adipose tissue caused by increases in inflammation and overnutrition. Hormone sensitive lipase (HSL) is part of the canonical lipolytic pathway and critical for complete lipolysis. This study hypothesizes that ROS is a signal that integrates regulation of lipolysis by targeting HSL. Experiments were performed with human differentiated adipocytes from the subcutaneous depot. Antioxidants were employed as a tool to decrease ROS, and it was found that scavenging ROS with diphenyliodonium, N-acetyl cysteine, or resveratrol decreased lipolysis in adipocytes. HSL phosphorylation of a key serine residue, Ser552, as well as translocation of this enzyme from the cytosol to the lipid droplet upon lipolytic stimulation were both abrogated by scavenging ROS. The phosphorylation status of other serine residues on HSL were not affected. These findings are significant because they document that ROS contributes to the physiological regulation of lipolysis via an effect on translocation. Such regulation could be useful in developing new obesity therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号