首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
T Koyama  F Harada    S Kawai 《Journal of virology》1984,51(1):154-162
The accompanying paper (S. Kawai and T. Koyama , J. Virol. 51:147-153, 1984) describes the isolation and biological properties of a mutant, TK15 , derived from a Rous sarcoma virus mutant, tsNY68 . The cis-acting defect of the mutant is analyzed biochemically in this paper. TK15 virions released from virus-producing 15c (+) cells were deficient in viral genomic 39S RNA, although comparable amounts of viral RNAs were transcribed in 15c (+) and tsNY68 -infected cells. Analysis of provirus DNA occurring in 15c (+) cells suggested that the mutant genome had a deletion of ca. 250 bases near the 5' end of the genome somewhere between the primer binding site and the 5' end of the gag-coding region. These findings indicate that at least part of the sequence lost in the TK15 genome is indispensable for packaging viral genomic RNA into virions. TK15 induces nonvirus -producing 15c (-) transformants at high frequency. Southern blot analysis of DNAs from those 15c (-) clone cells revealed that TK15 -derived proviruses contained various extents of internal deletions. Many 15c (-) clones had a provirus carrying only the src gene with long terminal repeat sequences at both ends. The mechanism for the segregation of 15c (-) cells is discussed.  相似文献   

2.
M Nishizawa  T Koyama    S Kawai 《Journal of virology》1987,61(10):3208-3213
TK15, a mutant derived from a temperature-sensitive mutant of Rous sarcoma virus (tsNY68), has extremely low infectivity although it has intact viral genes. Previous analyses of the virus and virus-induced transformants showed that the mutant has a defect in packaging of its own genomic RNA, possibly owing to a deletion near the 5' end. Another striking feature of TK15 is that it induces various types of virus-nonproducing (NP) transformants, 15c(-), at high frequency. In this work, the mechanisms of frequent segregation of NP cells were examined by molecular cloning of TK15-derived proviruses from NP cell clones and their sequence analysis. The structure of the major type of provirus, found in about half of the NP cell clones, was colinear with src subgenomic mRNA and was suggested to be due to infection with virions containing subgenomic mRNA in place of genomic RNA. Other types of proviruses present in 15c(-) cells appeared to contain cellular sequences of various lengths replacing various parts of viral sequences. The mechanism for the generation of these proviruses is discussed in relation to the nature of the packaging mutant.  相似文献   

3.
4.
UR2 is a newly characterized avian sarcoma virus whose genome contains a unique sequence that is not related to the sequences of other avian sarcoma virus transforming genes thus far identified. This unique sequence, termed ros, is fused to part of the viral gag gene. The product of the fused gag-ros gene of UR2 is a protein of 68,000 daltons (P68) immunoprecipitable by antiserum against viral gag proteins. In vitro translation of viral RNA and in vivo pulse-chase experiments showed that P68 is not synthesized as a large precursor and that it is the only protein product encoded in the UR2 genome, suggesting that it is involved in cell transformation by UR2. In vivo, P68 was phosphorylated at both serine and tyrosine residues. Immunoprecipitates of P68 with anti-gag antisera had a cyclic nucleotide-independent protein kinase activity that phosphorylated P68, rabbit immunoglobulin G in the immune complex, and alpha-casein. The phosphorylation by P68 was specific to tyrosine of the substrate proteins. P68 was phosphorylated in vitro at only one tyrosine site, and the tryptic phosphopeptide of in vitro-labeled P68 was different from those of Fujinami sarcoma virus P140 and avian sarcoma virus Y73-P90. A comparison of the protein kinases encoded by UR2, Rous sarcoma virus, Fujinami sarcoma virus, and avian sarcoma virus Y73 revealed that UR2-P68 protein kinase is distinct from the protein kinases encoded by those viruses by several criteria. Our results suggest that several different protein kinases encoded by viral transforming genes have the same functional specificity and cause essentially the same cellular alterations.  相似文献   

5.
6.
7.
8.
D Bonnet  P F Spahr 《Journal of virology》1990,64(11):5628-5632
In avian cells, the product of the gag gene of Rous sarcoma virus, Pr76gag, has been shown to be targeted to the plasma membrane, to form virus particles, and then to be processed into mature viral gag proteins. To explore how these phenomena may be dependent upon cellular (host) factors, we expressed the Rous sarcoma virus gag gene in a lower eucaryote, Saccharomyces cerevisiae, and studied the behavior of the gag gene product. We show here that Pr76gag is processed in yeast cells and that this processing is specific, since it is abolished in a mutant in which the active site of the gag protease has been destroyed. In this mutant, the uncleaved precursor is found associated with the yeast plasma membrane, yet no virus particles were detected in cells or in the culture medium. From our results, we can speculate either that in yeast cells, a host protease initiates Pr76gag processing in the cytosol or that in avian cells, an inhibitor prevents the processing until the viral particle is formed.  相似文献   

9.
To elucidate mechanisms involved in deoxyribonucleic acid-mediated gene transfer, we transferred the herpes simplex virus thymidine kinase gene (TK) into mouse Ltk- cells. Independent TK+ clones (transformants) and derivatives of each were tested for phenotypic expression and the presence and arrangement of TK sequences. Initially, transformants expressed viral TK unstable, with 10% of the cells in each generation losing both the TK+ phenotype and virally derived TK sequences. After a prolonged period in culture, stable subpopulations arose from which the TK+ phenotype and viral sequences were no longer lost at detectable frequency. Analysis of unstable cell populations indicated that individual viral deoxyribonucleic acid molecules were reduced in size, but were linked to other deoxyribonucleic acid to form molecules large enough to be precipitated in a Hirt fractionation. We term these molecules transgenomes. Analysis of independent unstable subclones derived from the primary transformants demonstrated that individual transgenomes could contain multiple copies of the viral TK sequences. Recipient cell lines frequently possessed more than one type of transgenome and possibly multiple copies per cell of each type. Stable derivatives possessed only one of the transgenomes present in the unstable parent, and these sequences were associated with a recipient cell chromosome.  相似文献   

10.
The genome structure of a newly isolated sarcoma virus, Y73, was studied. Y73 is a defective, potent sarcomagenic virus and contains 4.8-kilobase (kb) RNA as its genome; in contrast, helper virus associated with Y73 had 8.5-kb RNA, similar to other avian leukemia viruses. Fingerprinting analysis these RNAs demonstrated that the 4.8-kb RNA contains a specific RNA sequence of 2.5 kb, which represents the transforming gene (yas) of Y73. This specific sequence was mapped in the middle of the genome and had at both ends 1- to 1.5-kb sequences in common with Y73-associated virus RNA. This structure is very similar to those of avian and mammalian leukemia viruses. In vitro translation of the 4.8-kb RNA and the immunospecificity of the products directly demonstrated that polyprotein p90, containing p19, is a product translated from capped 4.8-kb RNA and that the specific peptide portion is coded by the yas sequence. Protein 90, which was also found in cells transformed with Y73, was suggested to be a transforming protein.  相似文献   

11.
12.
R325-beta TK+, a herpes simplex virus 1 mutant carrying a 500-base-pair deletion in the alpha 22 gene and the wild-type (beta) thymidine kinase (TK) gene, was previously shown to grow efficiently in HEp-2 and Vero cell lines. We report that in rodent cell lines exemplified by the Rat-1 line, plating efficiency was reduced and growth was multiplicity dependent. A similar multiplicity dependence for growth and lack of virus spread at low multiplicity was seen in resting, confluent human embryonic lung (HEL) cells. The shutoff of synthesis of beta proteins was delayed and the duration of synthesis of gamma proteins was extended in R325-beta TK+-infected HEL cells relative to cells infected with the wild-type parent, but no significant differences were seen in the total accumulation of viral DNA. To quantify the effect on late (gamma 2) gene expression, a recombinant carrying the deletion in the alpha 22 gene and a gamma 2-TK gene (R325-gamma 2 TK) was constructed and compared with a wild-type virus (R3112) carrying a chimeric gamma 2-TK gene. In Vero cells, the gamma 2-TK gene of R325-gamma 2TK was expressed earlier than and at the same level as the gamma 2-TK gene of R3112. In the confluent resting HEL cells, the expression of the gamma 2-TK gene of the alpha 22- virus was grossly reduced relative to that of the alpha 22+ virus. Electron microscopic studies indicated that the number of intranuclear capsids of R325-beta TK+ virus was reduced relative to that of the parent virus in resting confluent HEL cells, but the number of DNA-containing capsids was higher. Notwithstanding the grossly reduced neurovirulence on intracerebral inoculation in mice, R325-beta TK+ virus was able to establish latency in mice. We conclude that (i) the alpha 22 gene affects late (gamma 2) gene expression, and (ii) a host cell factor complements that function of the alpha 22 gene to a greater extent in HEp-2 and Vero cells than in confluent, resting HEL cells.  相似文献   

13.
We constructed lambda recombinants containing the Harvey murine sarcoma virus genome and the thymidine kinase (tk) gene of herpes simplex virus type 1 linked to each other. The tk gene was located in a position downstream from both the long terminal repeat and the src gene of Harvey murine sarcoma virus. The DNAs of the lambda recombinants were used to transfect NIH3T3 mouse fibroblasts in order to obtain Harvey murine sarcoma virus DNA-induced foci of transformed cells. The transformed foci were superinfected with a helper-independent retrovirus, and new individual retrovirus were isolated from the superinfected foci. The new viruses could induce focus formation on NIH3T3 cells and could convert NIH3T3(TK-) cells into TK+ cells by carrying the herpes simplex virus type 1 tk gene into the TK- cells. From virus-infected cells, we isolated nonproducer foci on NIH3T3 cells and TK+ transformants on NIH3T3(TK-) cells containing one such new viral genome coding for the dual properties. The new retroviral sequence in the nonproducer cells could be rescued into virus particles at high titers by superinfection with a helper-independent retrovirus. A hybridization analysis indicated that the recombinant virus contained both the Harvey murine sarcoma virus src sequence and the tk gene sequence in a single RNA species approximately 4.9 kilobases long. We concluded that retroviruses can be used as true vectors for genes other than genes that lead to oncogenesis.  相似文献   

14.
We describe a novel expression vector, pBK TK-1, that persists episomally in human cells that can be shuttled into bacteria. This vector includes sequences from BK virus (BKV), the thymidine kinase (TK) gene of herpes simplex virus type 1, and plasmid pML-1. TK+-transformed HeLa and 143 B cells contained predominantly full-length episomes. There were typically 20 to 40 (HeLa) and 75 to 120 143 B vector copies per cell, although some 143 B transformants contained hundreds. Low-molecular-weight DNA from TK+-transformed cells introduced into Escherichia coli were recovered as plasmids that were indistinguishable from the input vector. Removal of selective pressure had no apparent effect upon the episomal status of pBK TK-1 molecules in TK+-transformed cells. BKV T antigen may play a role in episomal replication of pBK TK-1 since this viral protein was expressed in TK+ transformants and since a plasmid that contained only the BKV origin of replication was highly amplified in BKV-transformed human cells that synthesize BKV T antigen.  相似文献   

15.
The cellular mutant B812 isolated from a Fisher rat cell line shows temperature sensitivity of focus formation induced by various retroviruses such as recombinant murine retrovirus containing the middle T gene of polyomavirus (PyMLV), Kirsten murine sarcoma virus, Moloney murine sarcoma virus, and recombinant murine retrovirus containing the src gene of Rous sarcoma virus. B812 cells, however, show normal ability to proliferate and synthesize protein at the nonpermissive temperature, suggesting that their mutation is in a gene specifically concerned with the process of transformation by retroviruses. In this work, experiments with hybrids of mutant and wild-type cells showed that the temperature-dependent defect of this mutant was complemented by wild-type cells. To determine the step of transformation that is restricted at the nonpermissive temperature in B812, we examined the expressions of the oncogene (middle T antigen) in no. 7 (wild-type cells) and B812 cultures infected with PyMLV (the chimeric retrovirus containing the middle T gene of polyomavirus) at the permissive and nonpermissive temperatures. Middle T-associated protein kinase activity, the expression of middle T antigen, and PyMLV-specific mRNA were reduced at the nonpermissive temperature in B812 cultures infected with PyMLV. However, integration of PyMLV into the chromosomal DNA of the mutant was not affected at the nonpermissive temperature. These results suggest that B812 cells have a mutation affecting the expression of viral mRNAs from integrated proviral DNA at the nonpermissive temperature.  相似文献   

16.
An in vitro proliferative defect has been observed in HIV-1-specific CD4(+) T cells from infected subjects with high-level plasma HIV-1 viremia. To determine the mechanism of this defect, HIV-1 Gag-specific CD4(+) T cells from treated and untreated HIV-1-infected subjects were analyzed for cytokine profile, proliferative capacity, and maturation state. Unexpectedly high frequencies of HIV-1-specific, IL-2-producing CD4(+) T cells were measured in subjects with low or undetectable plasma HIV-1 loads, regardless of treatment status, and IL-2 frequencies correlated inversely with viral loads. IL-2-producing CD4(+) T cells also primarily displayed a central memory (T(Cm); CCR7(+)CD45RA(-)) maturation phenotype, whereas IFN-gamma-producing cells were mostly effector memory (T(Em), CCR7(-)CD45RA(-)). Among Gag-specific, IFN-gamma-producing CD4(+) T cells, higher T(Em) frequencies and lower T(Cm) frequencies were observed in untreated, high viral load subjects than in subjects with low viral loads. The percentage of HIV-1 Gag-specific CD4(+) T(Cm) correlated inversely with HIV-1 viral load and directly with Gag-specific CD4(+) T cell proliferation, whereas the opposite relationships were observed for HIV-1-specific CD4(+) T(Em). These results suggest that HIV-1 viremia skews Gag-specific CD4(+) T cells away from an IL-2-producing T(Cm) phenotype and toward a poorly proliferating T(Em) phenotype, which may limit the effectiveness of the HIV-1-specific immune response.  相似文献   

17.
Open reading frame 73 (ORF 73) is conserved among the gamma-2-herpesviruses (rhadinoviruses) and, in Kaposi's sarcoma-associated herpesvirus (KSHV) and herpesvirus saimiri (HVS), has been shown to encode a latency-associated nuclear antigen (LANA). The KSHV and HVS LANAs have also been shown to be required for maintenance of the viral genome as an episome during latency. LANA binds both the viral latency-associated origin of replication and the host cell chromosome, thereby ensuring efficient partitioning of viral genomes to daughter cells during mitosis of a latently infected cell. In gammaherpesvirus 68 (gammaHV68), the role of the LANA homolog in viral infection has not been analyzed. Here we report the construction of a gammaHV68 mutant containing a translation termination codon in the LANA ORF (73.STOP). The 73.STOP mutant virus replicated normally in vitro, in both proliferating and quiescent murine fibroblasts. In addition, there was no difference between wild-type (WT) and 73.STOP virus in the kinetics of induction of lethality in mice lacking B and T cells (Rag 1(-/-)) infected with 1000 PFU of virus. However, compared to WT virus, the 73.STOP mutant exhibited delayed kinetics of replication in the lungs of immunocompetent C57BL/6 mice. In addition, the 73.STOP mutant exhibited a severe defect in the establishment of latency in the spleen of C57BL/6 mice. Increasing the inoculum of 73.STOP virus partially overcame the acute replication defected observed in the lungs at day 4 postinfection but did not ameliorate the severe defect in the establishment of splenic latency. Thus, consistent with its proposed role in replication of the latent viral episome, LANA appears to be a critical determinant in the establishment of gammaHV68 latency in the spleen post-intranasal infection.  相似文献   

18.
Temperature-sensitive cell lines were obtained by DNA-mediated transfer of the thymidine kinase (TK) gene from a mutant, ts1117, of herpes simplex virus type 1. The cells died at 39 degrees C in selective medium which contained low levels (1 microgram/ml) of thymidine. In this lethal condition, no revertants were detected among 10(8) cells. It was shown by in vitro analysis of the TK activity that the temperature-sensitive cell line contains an enzyme whose activity is temperature sensitive and relatively unaffected by dTTP. The viral enzyme has these properties. The effect of the lethal growth conditions in the cell line was characterized by cell cycle analysis and rescue experiments which involved a shift to the permissive conditions. The successful transfer of the mutant viral TK activity to cells provides an additional selective marker for gene transfer.  相似文献   

19.
Four poliovirus mutants with modifications of tyrosine 88 in 2A(pro) were generated and introduced into the cloned poliovirus genome. Mutants Y88P and Y88L were nonviable, mutant Y88F showed a wild-type (WT) phenotype, and mutant Y88S showed a delayed cytopathic effect and formed small plaques in HeLa cells. Growth of Y88S in HeLa cells was restricted, giving rise to about 20% of the PFU production of the WT poliovirus. The 2A (Y88S) mutant synthesized significantly lower levels of viral proteins in HeLa cells than did the WT poliovirus, while the kinetics of p220 cleavage were identical for both viruses. Strikingly, the 2A (Y88S) mutant was unable to cleave 3CD, as shown by analysis of poliovirus proteins labeled with [35S]methionine or immunoblotted with a specific anti-3C serum. The ability of the Y88S mutant to form infectious virus and cleave 3CD can be complemented by the WT poliovirus. Synthesis of viral RNA was diminished in the Y88S mutant but less than the inhibition of translation of viral RNA. Experiments in which guanidine was used to inhibit poliovirus RNA synthesis suggest that the primary defect of the Y88S mutant virus is at the level of poliovirus RNA translation, while viral genome replication is much less affected. Transfection of HeLa cells infected with the WT poliovirus with a luciferase mRNA containing the poliovirus 5' untranslated sequence gives rise to a severalfold increase in luciferase activity. This enhanced translation of leader-luc mRNA was not observed when the transfected cells were infected with the 2A (Y88S) mutant. Moreover, cotransfection with mRNA encoding WT poliovirus 2A(pro) enhanced translation of leader-luc mRNA. This enhancement was much lower upon transfection with mRNA encoding 2A(Y88S), 2A(Y88L), or 2A(Y88P). These findings support the view that 2A(pro) itself, rather than the 3C' and/or 3D' products, is necessary for efficient translation of poliovirus RNA in HeLa cells.  相似文献   

20.
Chicken embryo cells transformed by the related avian sarcoma viruses PRC II and Fujinami sarcoma virus, or by the unrelated virus Y73, contain three phosphoproteins not observed in untransformed cells and increased levels of up to four other phosphoproteins. These same phosphoproteins are present in increased levels in cells transformed by Rous sarcoma virus, a virus which is apparently unrelated to the three aforementioned viruses. In all cases, the phosphoproteins contain phosphotyrosine and thus may be substrates for the tyrosine-specific protein kinases encoded by these viruses. In one case, the site(s) of tyrosine phosphorylation within the protein is the same for all four viruses. A homologous protein is also phosphorylated, at the same major site, in mouse 3T3 cells transformed by Rous sarcoma virus or by the further unrelated virus Abelson murine leukemia virus. A second phosphotyrosine-containing protein has been detected in both Rous sarcoma virus and Abelson murine leukemia virus-transformed 3T3 cells, but was absent from normal 3T3 cells and 3T3 cells transformed by various other viruses. We conclude that representatives of four apparently unrelated classes of transforming retroviruses all induce the phosphorylation of tyrosines present in the same set of cellular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号