首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertebrate neural induction requires inhibition of bone morphogenetic protein (BMP) signaling in the ectoderm. However, whether inhibition of BMP signaling is sufficient to induce neural tissues in vivo remains controversial. Here we have addressed why inhibition of BMP/Smad1 signaling does not induce neural markers efficiently in Xenopus ventral ectoderm, and show that suppression of both Smad1 and Smad2 signals is sufficient to induce neural markers. Manipulations that inhibit both Smad1 and Smad2 pathways, including a truncated type IIB activin receptor, Smad7 and Ski, induce early neural markers and inhibit epidermal genes in ventral ectoderm; and co-expression of BMP inhibitors with a truncated activin/nodal-specific type IB activin receptor leads to efficient neural induction. Conversely, stimulation of Smad2 signaling in the neural plate at gastrula stages results in inhibition of neural markers, disruption of the neural tube and reduction of head structures, with conversion of neural to neural crest and mesodermal fates. The ability of activated Smad2 to block neural induction declines by the end of gastrulation. Our results indicate that prospective neural cells are poised to respond to Smad2 and Smad1 signals to adopt mesodermal and non-neural ectodermal fates even at gastrula stages, after the conventionally assigned end of mesodermal competence, so that continued suppression of both mesoderm- and epidermis-inducing Smad signals leads to efficient neural induction.  相似文献   

2.
Smad2 and Smad3, two essential nuclear effectors of transforming growth factor (Tgf)-β signals, have been found to be implicated in mesoderm and endoderm development in vertebrate embryos. However, their roles in the induction and patterning of the neuroectoderm are not well established. In this study, we show that interference with Smad2/3 activities in zebrafish embryos, by injecting dnsmad3b mRNA encoding a dominant negative Smad3b mutant, inhibits the expression of the early neural markers sox2 and sox3 at the onset of gastrulation and results in reduction of the anterior neuroectodermal marker otx2 as well as the posterior neuroectodermal marker hoxb1b during late gastrulation, suggesting a role of Smad2/3 activities in neural induction. Conversely, excess Smad2/3 activities, caused by injecting smad3b mRNA, lead to an enhancement of sox2 and sox3 expression in the ventral domains but an inhibition of their expression in the dorsalmost region at early stages. Overexpression of smad3b also causes ventral expansion of the otx2 and hoxb1b expression domains accompanied with rostral shift of the hoxb1b domain at late gastrulation stages. Collectively, these data indicate that Smad2/3 activities are required for neural induction and neuroectodermal posteriorization in zebrafish. Knockdown of chordin partially inhibits effect of smad3b overexpression on neural induction, implying that Smad2/3 exert their effect on neural induction in part by regulating the expression of Bmp antagonists. Furthermore, down-regulation or up-regulation of Smad2/3 activities in MZoep mutant embryos, which lack the organizer and mesendodermal tissues due to deficiency of Nodal signaling, still affects induction and patterning of the neuroectoderm, suggesting that Smad2/3 activities are implicated in neural development in the absence of the organizer and mesendodermal tissues. We additionally demonstrate that Smad2/3 activities cooperate with Wnt and Fgf signals in neural development. Thus, Smad2/3 activities play important roles not only in mesendodermal development but also in neural development during early vertebrate embryogenesis.  相似文献   

3.
Smad10 is required for formation of the frog nervous system   总被引:1,自引:0,他引:1  
Before the nervous system establishes its complex array of cell types and connections, multipotent cells are instructed to adopt a neural fate and an anterior-posterior pattern is established. In this report, we show that Smad10, a member of the Smad family of intracellular transducers of TGFbeta signaling, is required for formation of the nervous system. In addition, two types of molecules proposed as key to neural induction and patterning, bone morphogenetic protein (BMP) antagonists and fibroblast growth factor (FGF), require Smad10 for these activities. These data suggest that Smad10 may be a central mediator of the development of the frog nervous system.  相似文献   

4.
5.
6.
In this paper, we investigate the function of Smicl, a zinc-finger Smad-interacting protein that is expressed maternally in the Xenopus embryo. Inhibition of Smicl function by means of antisense morpholino oligonucleotides causes the specific downregulation of Chordin, a dorsally expressed gene encoding a secreted BMP inhibitor that is involved in mesodermal patterning and neural induction. Chordin is activated by Nodal-related signalling in an indirect manner, and we show here that Smicl is involved in a two-step process that is necessary for this activation. In the first, Smad3 (but not Smad2) activates expression of Xlim1 in a direct fashion. In the second, a complex containing Smicl and the newly induced Xlim1 induces expression of Chordin. As well as revealing the function of Smicl in the early embryo, our work yields important new insight in the regulation of Chordin and identifies functional differences between the activities of Smad2 and Smad3 in the Xenopus embryo.  相似文献   

7.
8.
A dominant molecular explanation for neural induction is the 'default model', which proposes that the ectoderm is pre-programmed towards a neural fate, but is normally inhibited by endogenous BMPs. Although there is strong evidence favouring this in Xenopus, data from other organisms suggest more complexity, including an involvement of FGF and modulation of Wnt. However, it is generally believed that these additional signals also act by inhibiting BMPs. We have investigated whether BMP inhibition is necessary and/or sufficient for neural induction. In the chick, misexpression of BMP4 in the prospective neural plate inhibits the expression of definitive neural markers (Sox2 and late Sox3), but does not affect the early expression of Sox3, suggesting that BMP inhibition is required only as a late step during neural induction. Inhibition of BMP signalling by the potent antagonist Smad6, either alone or together with a dominant-negative BMP receptor, Chordin and/or Noggin in competent epiblast is not sufficient to induce expression of Sox2 directly, even in combination with FGF2, FGF3, FGF4 or FGF8 and/or antagonists of Wnt signalling. These results strongly suggest that BMP inhibition is not sufficient for neural induction in the chick embryo. To test this in Xenopus, Smad6 mRNA was injected into the A4 blastomere (which reliably contributes to epidermis but not to neural plate or its border) at the 32-cell stage: expression of neural markers (Sox3 and NCAM) is not induced. We propose that neural induction involves additional signalling events that remain to be identified.  相似文献   

9.
10.
Patterning of the pre-gastrula embryo and subsequent neural induction post-gastrulation are very complex and intricate processes of which little, until recently, has been understood. The earliest decision in neural development, the choice between epidermal or neural fates, is regulated by bone morphogenetic protein (BMP) signaling within the ectoderm. Inhibition of BMP signaling is sufficient for neural induction. Many secreted BMP inhibitors are expressed exclusively within the organizer of the Xenopus gastrula embryo and therefore are predicted to act as bona fide endogenous neural inducers. Other cell-autonomous inhibitors of the BMP pathway are more widely expressed, such as the inhibitory Smads, Smad6 and Smad7. In this report we describe the biological and biochemical characterization of 51-B6, a novel member of Cerberus/Dan family of secreted BMP inhibitors, which we identified in a screen for Smad7-induced genes. This gene is expressed maternally in an animal to vegetal gradient, and its expression levels decline rapidly following gastrulation. In contrast to known BMP inhibitors, 51-B6 is broadly expressed in the ectoderm until the end of gastrulation. The timing, pattern of expression, and activities of this gene makes it unique when compared to other BMP/TGFbeta/Wnt secreted inhibitors which are expressed only zygotically and maintained post-gastrulation. We propose that a function of 51-B6 is to block BMP and TGFbeta signals in the ectoderm in order to regulate cell fate specification and competence prior to the onset of neural induction. In addition, we demonstrate that 51-B6 can act as a neural inducer and induce ectopic head-like structures in neurula staged embryos. Because of this embryological activity, we have renamed this clone Coco, after the Spanish word meaning head.  相似文献   

11.
12.
Neural induction is widely believed to be a direct consequence of inhibition of BMP pathways. Because of conflicting results and interpretations, we have re-examined this issue in Xenopus and chick embryos using the powerful and general TGFβ inhibitor, Smad7, which inhibits both Smad1- (BMP) and Smad2- (Nodal/Activin) mediated pathways. We confirm that Smad7 efficiently inhibits phosphorylation of Smad1 and Smad2. Surprisingly, however, over-expression of Smad7 in Xenopus ventral epidermis induces expression of the dorsal mesodermal markers Chordin and Brachyury. Neural markers are induced, but in a non-cell-autonomous manner and only when Chordin and Brachyury are also induced. Simultaneous inhibition of Smad1 and Smad2 by different approaches does not account for all Smad7 effects, indicating that Smad7 has activities other than inhibition of the TGFβ pathway. We provide evidence that these effects are independent of Wnt, FGF, Hedgehog and retinoid signalling. We also show that these effects are due to elements outside of the MH2 domain of Smad7. Together, these results indicate that BMP inhibition is not sufficient for neural induction even when Nodal/Activin is also blocked, and that Smad7 activity is considerably more complex than had previously been assumed. We suggest that experiments relying on Smad7 as an inhibitor of TGFβ-pathways should be interpreted with considerable caution.  相似文献   

13.
Smad4 is required to regulate the fate of cranial neural crest cells   总被引:1,自引:0,他引:1  
Ko SO  Chung IH  Xu X  Oka S  Zhao H  Cho ES  Deng C  Chai Y 《Developmental biology》2007,312(1):435-447
Smad4 is the central mediator for TGF-β/BMP signals, which are involved in regulating cranial neural crest (CNC) cell formation, migration, proliferation and fate determination. It is unclear whether TGF-β/BMP signals utilize Smad-dependent or -independent pathways to control the development of CNC cells. To investigate the functional significance of Smad4 in regulating CNC cells, we generated mice with neural crest specific inactivation of the Smad4 gene. Our study shows that Smad4 is not required for the migration of CNC cells, but is required in neural crest cells for the development of the cardiac outflow tract. Smad4 is essential in mediating BMP signaling in the CNC-derived ectomesenchyme during early stages of tooth development because conditional inactivation of Smad4 in neural crest derived cells results in incisor and molar development arrested at the dental lamina stage. Furthermore, Smad-mediated TGF-β/BMP signaling controls the homeobox gene patterning of oral/aboral and proximal/distal domains within the first branchial arch. At the cellular level, a Smad4-mediated downstream target gene(s) is required for the survival of CNC cells in the proximal domain of the first branchial arch. Smad4 mutant mice show underdevelopment of the first branchial arch and midline fusion defects. Taken together, our data show that TGF-β/BMP signals rely on Smad-dependent pathways in the ectomesenchyme to mediate epithelial-mesenchymal interactions that control craniofacial organogenesis.  相似文献   

14.
15.
DRAGON, a bone morphogenetic protein co-receptor   总被引:5,自引:0,他引:5  
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)beta superfamily of ligands that regulate many crucial aspects of embryonic development and organogenesis. Unlike other TGFbeta ligands, co-receptors for BMP ligands have not been described. Here we show that DRAGON, a glycosylphosphatidylinositol-anchored member of the repulsive guidance molecule family, which is expressed early in the developing nervous system, enhances BMP but not TGFbeta signaling. DRAGON binds directly to BMP2 and BMP4 but not to BMP7 or other TGFbeta ligands. The enhancing action of DRAGON on BMP signaling is also reduced by administration of Noggin, a soluble BMP antagonist, indicating that the action of DRAGON is ligand-dependent. DRAGON associates directly with BMP type I (ALK2, ALK3, and ALK6) and type II (ActRII and ActRIIB) receptors, and its signaling is reduced by dominant negative Smad1 and ALK3 or -6 receptors. In the Xenopus embryo, DRAGON both reduces the threshold of the ability of Smad1 to induce mesodermal and endodermal markers and alters neuronal and neural crest patterning. The direct interaction of DRAGON with BMP ligands and receptors indicates that it is a BMP co-receptor that potentiates BMP signaling.  相似文献   

16.
17.
Recent studies indicate an essential role for the EGF-CFC family in vertebrate development, particularly in the regulation of nodal signaling. Biochemical evidence suggests that EGF-CFC genes can also activate certain cellular responses independently of nodal signaling. Here, we show that FRL-1, a Xenopus EGF-CFC gene, suppresses BMP signaling to regulate an early step in neural induction. Overexpression of FRL-1 in animal caps induced the early neural markers zic3, soxD and Xngnr-1, but not the pan-mesodermal marker Xbra or the dorsal mesodermal marker chordin. Furthermore, overexpression of FRL-1 suppressed the expression of the BMP-responsive genes, Xvent-1 and Xmsx-1, which are expressed in animal caps and induced by overexpressed BMP-4. Conversely, loss of function analysis using morpholino-antisense oligonucleotides against FRL-1 (FRL-1MO) showed that FRL-1 is required for neural development. FRL-1MO-injected embryos lacked neural structures but contained mesodermal tissue. It was suggested previously that expression of early neural genes that mark the start of neuralization is activated in the presumptive neuroectoderm of gastrulae. FRL-1MO also inhibited the expression of these genes in dorsal ectoderm, but did not affect the expression of chordin, which acts as a neural inducer from dorsal mesoderm. FRL-1MO also inhibited the expression of neural markers that were induced by chordin in animal caps, suggesting that FRL-1 enables the response to neural inducing signals in ectoderm. Furthermore, we showed that the activation of mitogen-activated protein kinase by FRL-1 is required for neural induction and BMP inhibition. Together, these results suggest that FRL-1 is essential in the establishment of the neural induction response.  相似文献   

18.
During early vertebrate development, members of the transforming growth factor beta (TGFbeta) family play important roles in a variety of processes, including germ layer specification, patterning, cell differentiation, migration, and organogenesis. The activities of TGFbetas need to be tightly controlled to ensure their function at the right time and place. Despite identification of multiple regulators of Bone Morphogenetic Protein (BMP) subfamily ligands, modulators of the activin/nodal class of TGFbeta ligands are limited, and include follistatin, Cerberus, and Lefty. Recently, a membrane protein, tomoregulin-1 (TMEFF1, originally named X7365), was isolated and found to contain two follistatin modules in addition to an Epidermal Growth Factor (EGF) domain, suggesting that TMEFF1 may participate in regulation of TGFbeta function. Here, we show that, unlike follistatin and follistatin-related gene (FLRG), TMEFF1 inhibits nodal but not activin in Xenopus. Interestingly, both the follistatin modules and the EGF motif contribute to nodal inhibition. A soluble protein containing the follistatin and the EGF domains, however, is not sufficient for nodal inhibition; the location of TMEFF1 at the membrane is essential for its function. These results suggest that TMEFF1 inhibits nodal through a novel mechanism. TMEFF1 also blocks mesodermal, but not epidermal induction by BMP2. Unlike nodal inhibition, regulation of BMP activities by TMEFF1 requires the latter's cytoplasmic tail, while deletion of either the follistatin modules or the EGF motif does not interfere with the BMP inhibitory function of TMEFF1. These results imply that TMEFF1 may employ different mechanisms in the regulation of nodal and BMP signals. In Xenopus, TMEFF1 is expressed from midgastrula stages onward and is enriched in neural tissue derivatives. This expression pattern suggests that TMEFF1 may modulate nodal and BMP activities during neural patterning. In summary, our data demonstrate that tomoregulin-1 is a novel regulator of nodal and BMP signaling during early vertebrate embryogenesis.  相似文献   

19.
The specification of the neural crest progenitor cell (NCPC) population in the early vertebrate embryo requires an elaborate network of signaling pathways, one of which is the Bone Morphogenetic Protein (BMP) pathway. Based on alterations in neural crest gene expression in zebrafish BMP pathway component mutants, we previously proposed a model in which the gastrula BMP morphogen gradient establishes an intermediate level of BMP activity establishing the future NCPC domain. Here, we tested this model and show that an intermediate level of BMP signaling acts directly to specify the NCPC. We quantified the effects of reducing BMP signaling on the number of neural crest cells and show that neural crest cells are significantly increased when BMP signaling is reduced and that this increase is not due to an increase in cell proliferation. In contrast, when BMP signaling is eliminated, NCPC fail to be specified. We modulated BMP signaling levels in BMP pathway mutants with expanded or no NCPCs to demonstrate that an intermediate level of BMP signaling specifies the NCPC. We further investigated the ability of Smad5 to act in a graded fashion by injecting smad5 antisense morpholinos and show that increasing doses first expand the NCPCs and then cause a loss of NCPCs, consistent with Smad5 acting directly in neural crest progenitor specification. Using Western blot analysis, we show that P-Smad5 levels are dose-dependently reduced in smad5 morphants, consistent with an intermediate level of BMP signaling acting through Smad5 to specify the neural crest progenitors. Finally, we performed chimeric analysis to demonstrate for the first time that BMP signal reception is required directly by NCPCs for their specification. Together these results add substantial evidence to a model in which graded BMP signaling acts as a morphogen to pattern the ectoderm, with an intermediate level acting in neural crest specification.  相似文献   

20.
Bone morphogenetic protein (BMP) inhibition has been proposed as the primary determinant of neural cell fate in the developing Xenopus ectoderm. The evidence supporting this hypothesis comes from experiments in explanted "animal cap" ectoderm and in intact embryos using BMP antagonists that are unregulated and active well before gastrulation. While informative, these experiments cannot answer questions regarding the timing of signals and the behavior of cells in the more complex environment of the embryo. To examine the effects of BMP antagonism at defined times in intact embryos, we have generated a novel, two-component system for conditional BMP inhibition. We find that while blocking BMP signals induces ectopic neural tissue both in animal caps and in vivo, in intact embryos, it can only do so prior to late blastula stage (stage 9), well before the onset of gastrulation. Later inhibition does not induce neural identity, but does induce ectopic neural crest, suggesting that BMP antagonists play temporally distinct roles in establishing neural and neural crest identity. By combining BMP inhibition with fibroblast growth factor (FGF) activation, the neural inductive response in whole embryos is greatly enhanced and is no longer limited to pre-gastrula ectoderm. Thus, BMP inhibition during gastrulation is insufficient for neural induction in intact embryos, arguing against a BMP gradient as the sole determinant of ectodermal cell fate in the frog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号