首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Jishage  A Iwata  S Ueda    A Ishihama 《Journal of bacteriology》1996,178(18):5447-5451
By a quantitative Western immunoblot analysis, the intracellular levels of two principal sigma subunits, sigma 70 (sigma D, the rpoD gene product) and sigma 38 (sigma S, the rpoS gene product), and of two minor sigma subunits, sigma 54 (sigma N, the rpoN gene product) and sigma 28 (sigma F, the rpoF gene product), were determined in two Escherichia coli strains, W3110 and MC4100. The results indicated that the levels of sigma 54 and sigma 28 are maintained at 10 and 50%, respectively, of the level of sigma 70 in both strains growing at both exponential and stationary phases, but in agreement with the previous measurement for strain MC4100 (M. Jishage and A. Ishihama, J. Bacteriol. 177:6832-6835, 1995), the level of sigma 38 was undetectable at the exponential growth phase but increased at 30% of the level of sigma 70 at the stationary phase. Stress-coupled change in the intracellular level was observed for two sigma subunits: (i) the increase in sigma 38 level and the decrease in sigma 28 level upon exposure to heat shock at the exponential phase and (ii) the increase in sigma 38 level under high-osmolality conditions at both the exponential and stationary phases.  相似文献   

2.
3.
4.
5.
A sigma 70-like gene, sigA, has been identified from Corynebacterium ammoniagenes. The sigA gene encodes a polypeptide of 467 amino acids with a calculated molecular mass of 52036 Da. The deduced amino acid sequence preserves the common motifs of the primary sigma factors and shows very high similarity to those of SigA (sigmaA) homologues from high G+C Gram-positive bacteria, which suggest that the sigA gene encodes the primary sigma factor. The sigA gene is transcribed as a monocistronic mRNA of 2 kb and its mRNA occurs during the exponential growth phase and decays rapidly on entry into the stationary phase. The open reading frame encoding polyphosphate glucokinase-like protein is closely linked to the sigA gene.  相似文献   

6.
We report the first example of a gene, hmp, encoding a soluble flavohemoglobin in Escherichia coli K-12, which is up-regulated by paraquat in a SoxRS-independent manner. Unlike what is found for other paraquat-inducible genes, high concentrations of paraquat (200 microM) were required to increase the level of hmp expression, and maximal induction was observed only after 20 min of exposure to paraquat. Neither a mutation in soxS nor one in soxR prevented the paraquat-dependent increase in phi(hmp-lacZ) expression, but either mutant allele delayed full expression of phi(hmp-lacZ) activity after paraquat addition. Induction of hmp by paraquat was demonstrated in aerobically grown cultures during exponential growth and the stationary phase, thus revealing two Sox-independent regulatory mechanisms. Induction of hmp by paraquat in the stationary phase was dependent on the global regulator of stationary-phase gene expression, RpoS (sigma S). However, a mutation in rpoS did not prevent an increase in hmp expression by paraquat in exponentially growing cells. Induction of sigma S in the exponential phase by heat shock also induced phi(hmp-lacZ) expression in the presence of paraquat, supporting the role of sigma S in one of the regulatory mechanisms. Mutations in oxyR or rob, known regulators of several stress promoters in E. coli, had no effect on the induction of hmp by paraquat. Other known superoxide-generating agents (plumbagin, menadione, and phenazine methosulfate) were not effective in inducing hmp expression.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Escherichia coli K-12 strain 285c contains a short deletion mutation in rpoD, the gene encoding the sigma 70 subunit of RNA polymerase. The sigma 70 protein encoded by this allele (rpoD285) unstable, and this instability leads to temperature-sensitive growth. Pseudorevertants of 285c that can grow at high temperature contain mutations in the rpoH gene (encoding the heat shock sigma factor sigma 32), and their mutant sigma 70 proteins have increased stability. We characterized the alterations in three of these rpoH alleles. rpoH111 was a point mutation resulting in a single amino acid substitution. rpoH107 and rpoH113, which are known to be incompatible with rpoD+, altered the restriction map of rpoH. rpoH113 was deleted for 72 base pairs of the rpoH gene yet retained some sigma 32 activity. rpoH107 had two IS1 elements that flanked an unknown DNA segment of more than 6.4 kilobases inserted in the rpoH promoter region. The insertion decreased the amount of rpoH mRNA to less than 0.5% of the wild-type level at 30 degrees C. However, the mRNA from several heat shock promoters was decreased only twofold, suggesting that the strain has a significant amount of sigma 32.  相似文献   

14.
15.
16.
17.
H L Carter  rd  L F Wang  R H Doi    C P Moran  Jr 《Journal of bacteriology》1988,170(4):1617-1621
  相似文献   

18.
19.
20.
Strains of Escherichia coli which lack detectable guanosine 3',5'-bispyrophosphate (ppGpp) display a pleiotropic phenotype that in some respects resembles that of rpoS (katF) mutants. This led us to examine whether ppGpp is a positive regulator of sigma s synthesis. sigma s is a stationary-phase-specific sigma factor that is encoded by the rpoS gene. We found that a ppGpp-deficient strain is defective in sigma s synthesis as cells enter stationary phase in a rich medium, as judged by immunoblots. Under more-defined conditions we found that the stimulation of sigma s synthesis following glucose, phosphate, or amino acid starvation of wild-type strains is greatly reduced in a strain lacking ppGpp. The failure of ppGpp-deficient strains to synthesize sigma s in response to these starvation regimens could indicate a general defect in gene expression rather than a specific dependence of rpoS expression on ppGpp. We therefore tested the effect of artificially elevated ppGpp levels on sigma s synthesis either with mutations that impair ppGpp decay or by gratuitously inducing ppGpp synthesis with a Ptac::relA fusion. In both instances, we observed enhanced sigma s synthesis. Apparently, ppGpp can activate sigma s synthesis under conditions of nutrient sufficiency as well as during entry into stationary phase. This finding suggests that changes in ppGpp levels function both as a signal of imminent stationary phase and as a signal of perturbations in steady-state growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号