首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of this work is to devise an efficient enzymatic process for the production of linear alkyl esters in aqueous miniemulsion systems. The esterification reactions of linear alcohols and carboxylic acids were performed with three different enzymes, commercial Amano lipase PS from Pseudomonas cepacia, Lipase type VII from Candida rugosa, and lyophilized Fusarium solani pisi cutinase expressed in Saccharomyces cerevisiae SU50. The miniemulsion system shows a high potential for the synthesis of linear alkyl esters, for example, hexyl octanoate, which could be synthesized with an ester yield of 94% using Amano lipase PS. Even with hydrophilic alcohols as ethanol, ethyl decanoate could be obtained with a concentration of 0.45 M and a yield of 62% using F. s. pisi cutinase as catalyst. High esterification rates for ethyl‐ and hexyloleate in miniemulsion showed a significant shift in cutinase selectivity towards longer chain length carboxylic acids. The stepwise addition of the alcohol led to an increase of the esterification yield. Moreover, increasing the amount of dispersed organic phase, mainly consisting of the substrates, led to a significant increase of the final ester concentration (e.g., concentration of 1.4 M for ethyl decanoate for the esterification with Amano Lipase PS). Biotechnol. Bioeng. 2010;106: 507–515. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Polycaprolactone (PCL), a synthetic polyester with applications in biodegradable plastics, is degraded by a variety of microorganisms, including fungal phytopathogens. These pathogens secrete cutinase, which hydrolyzes cutin, the polyester structural component of plant cuticle, releasing ω-hydroxy fatty acids that induce cutinase synthesis. Our laboratory previously reported that growth of Fusarium solani on PCL requires cutinase, which is active as a PCL depolymerase and induced by the products of its action on PCL. A mutant strain of F. solani in which the cutinase gene is deleted was unable to grow on PCL and did not secrete PCL depolymerase activity in the media tested. It is now shown that this mutant produces a PCL depolymerase in media containing lipase inducers. Wild-type strains also produce this second PCL depolymerase, which is induced by Tween 80 and tributyrin, but not by PCL or cutin. The second depolymerase shows interfacial activation, indicating that it is a lipase. PCL may thus be a substrate but not an inducer of depolymerases that degrade it, and screening microorganisms on medium with PCL as the sole source of carbon and energy may fail to reveal strains with active PCL depolymerases, because of the absence of an inducer. Surprisingly, Tween 80 induces both cutinase and lipase activities in wild-type F. solani. Received: 31 March 1998 / Received revision: 27 July 1998 / Accepted: 8 August 1998  相似文献   

3.
A lipase from Thermomyces lanuginosus and cutinases from Thermobifida fusca and Fusarium solani hydrolysed poly(ethylene terephthalate) (PET) fabrics and films and bis(benzoyloxyethyl) terephthalate (3PET) endo-wise as shown by MALDI-Tof-MS, LC–UVD/MS, cationic dyeing and XPS analysis. Due to interfacial activation of the lipase in the presence of Triton X-100, a seven-fold increase of hydrolysis products released from 3PET was measured. In the presence of the plasticizer N,N-diethyl-2-phenylacetamide (DEPA), increased hydrolysis rates of semi-crystalline PET films and fabrics were measured both for lipase and cutinase. The formation of novel polar groups resulted in enhanced dye ability with additional increase in colour depth by 130% and 300% for cutinase and lipase, respectively, in the presence of plasticizer.  相似文献   

4.
The structural and enzymatic characteristics of a cutinase‐like enzyme (CLE) from Cryptococcus sp. strain S‐2, which exhibits remote homology to a lipolytic enzyme and a cutinase from the fungus Fusarium solani (FS cutinase), were compared to investigate the unique substrate specificity of CLE. The crystal structure of CLE was solved to a 1.05 Å resolution. Moreover, hydrolysis assays demonstrated the broad specificity of CLE for short and long‐chain substrates, as well as the preferred specificity of FS cutinase for short‐chain substrates. In addition, site‐directed mutagenesis was performed to increase the hydrolysis activity on long‐chain substrates, indicating that the hydrophobic aromatic residues are important for the specificity to the long‐chain substrate. These results indicate that hydrophobic residues, especially the aromatic ones exposed to solvent, are important for retaining lipase activity. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
A cutinase from Thermobifida fusca WSH04 and two lipases, L3126 and Lipex 100L, were applied to the enzymatic pretreatment of wool fabrics followed by protease treatment, aiming at hydrolyzing the outmost bound lipids on the wool surface. A mild oxidation with 2 g/L hydrogen peroxide (30%) was selectively carried out before the enzymatic treatments. The cooperative actions of mild oxidation, cutinase and lipase pretreatments during wool processing were investigated. The results showed that lipase pretreatment alone had less impact on the wettability and anti‐felting ability of wool fabrics than cutinase treatment. Combined use of cutinase and lipase pretreatments did not evidently improve the properties of the wool fabric compared with the individual cutinase pretreatment. By contrast, mild oxidation slightly enhanced the activity of cutinase toward the wool surface and promoted the subsequent proteolytic reactions. The wetting time and contact angle of the protease‐treated fabric deceased to 1.2 min and 55°, respectively; the area shrinkage decreased to 3.1%, with an acceptable strength loss from 489 to 418 N. The changes in the cuticle scales of the wool fibers, confirmed by scanning electron microscopy, further proved the cooperative actions of mild oxidation and cutinase pretreatment during enzymatic wool processing.  相似文献   

6.
Fusarium venenatum A3/5 was transformed using the Aspergillus niger expression plasmid, pIGF, in which the coding sequence for the F. solani f. sp. pisi cutinase gene had been inserted in frame, with a KEX2 cleavage site, with the truncated A. niger glucoamylase gene under control of the A. niger glucoamylase promoter. The transformant produced up to 21 U cutinase l−1 in minimal medium containing glucose or starch as the primary carbon source. Glucoamylase (165 U l−1 or 8 mg l−1) was also produced. Both the transformant and the parent strain produced cutinase in medium containing cutin.  相似文献   

7.
Summary A Fusarium solani pisi recombinant cutinase solubilized in phosphatidylcholine/isooctane reversed micelles was used to catalyse the esterification reaction of butyric acid with 2-butanol at pH 10.7. The influence of temperature, Wo and substrates on lipase stability was evaluated. The enzyme displays a better stability, with a half-life over 125 days, at a temperature of 22°C and for a low water content (WO= 6.5). Butyric acid increased the cutinase deactivation (t1/2=0.56h), while 2-butanol led to a similar half-life (t1/2=14h) as without substrate.  相似文献   

8.
The hydrolysis reaction of p-nitrophenyl butyrate catalyzed by lipases was followed with in situ UV/vis diode array spectrophotometry. Five enzymes - Candida antarctica lipase B and Fusarium solani pisi cutinase wild-type and three single-mutation variants - were tested as catalysts in homogeneous conditions and immobilized on zeolite NaY, on a polyacrylate support and as cross-linked aggregates. Using deconvolution techniques and kinetic modeling, the thermal stability of the different biocatalysts was compared in operational conditions and the results were supported by steady-state enzyme fluorescence measurements. We concluded that both the mutagenesis and the immobilization on zeolite NaY had a positive effect on the thermal stability of F. solani pisi cutinase.  相似文献   

9.
The main objective of this work was studying and testing the nature and influence of reaction media (organic solvent vs. miniemulsion system) on the synthesis of alkyl esters catalyzed by Fusarium solani pisi cutinase. Ester synthesis and cutinase selectivity for different chain length of acids and alcohols (ethyl and hexyl) were evaluated. In iso-octane, after 1 h of reaction, cutinase exhibits rates of esterification between 0.24 μmol x mg1 x min–1 for ethyl oleate and 1.15 μmol x mg1 x min–1 for ethyl butyrate, while in a miniemulsion system the rates were from 0.05 for ethyl heptanoate to 0.76 μmol x mg–1 x min–1 for ethyl decanoate. The reaction rate for the synthesis of hexyl esters in a miniemulsion system was from 0.19 for hexyl heptanoate to 1.07 μmol x mg1 x min–1 for hexyl decanoate. High conversion yields of 95% at equilibrium after 8 h of reaction in iso-octane for pentanoic acid (C5) with ethanol at equimolar concentration (0.1 M) was achieved. Additionally, this work showed that a significant and unexpected shift in cutinase selectivity occurred towards longer chain length carboxylic acids (C8–C10) in miniemulsion system as compared to organic solvent (iso-octane) and previous studies in reverse micellar systems. The possibility of working with higher concentration of substrates, without inhibitory effect on the enzyme, was another advantage of the miniemulsion system.  相似文献   

10.
A total of approximately 400 bacterial strains were isolated from 73 plastic wastes collected from 14 different regions. Nineteen isolates that form clear zones both on tributyrin and poly ε-caprolactone (PCL) agar, were identified based on 16S rRNA gene sequences. Among these, Bacillus sp. KY0701 that caused the highest weight loss of PCL films in minimal salt medium, was selected for cutinase production. The highest enzyme activity (15 U/mL) was obtained after 4 days of incubation at 50°C, pH 7.0 and 200?rpm in a liquid medium containing 1.5% (w/v) apple cutin and 0.1% (w/v) yeast extract. The purified enzyme was stable at high temperatures (50–70°C) and over a wide pH range (5.5–9.0). The relative activity of cutinase was at least 75% in the percent of various organic solvents. The apparent Km and Vmax values of the cutinase for p-nitrophenyl butyrate were 0.72?mM and 336.8?µmol p-nitrophenol/h/g, respectively. In addition, it showed high stability and compatibility with commercial detergents. These features of cutinase obtained from Bacillus sp. KY0701 make it a promising candidate for application in the detergent and chemical industries. In our best knowledge, this is the first report for cutinase production and characterization produced by a Bacillus strain.  相似文献   

11.
Knowledge of lipase mechanisms has increased significantly during the past year. The structural characterization of the opening mechanism of the active site of lipases, as first described for Rhizomucor miehei lipase, has now been extended to the pancreatic lipase-colipase system, and to the Geotrichum candidum/Candida rugosa lipases. In the latter two lipase families, lid opening is far more complicated than for R. miehei lipase. Resolution of the structure of cutinase, an esterase with lipase activity, and determination of the sequence of guinea pig pancreatic lipase showed that these lipases have no lid. The fact that both enzymes are not activated at the interface shows the importance of the lid in the latter phenomenon. On the basis of sequence analysis, cellulases have been divided into different families. Structural determinations of some members of a few of these families confirm that they have different folds. The active sites of these cellulases always seem to contain acidic catalytic groups. The relative spatial position of these groups and their accessibility varies considerably among the cellulases for which structural determinations have been made.  相似文献   

12.
We used cutinase from the filamentous fungi Aspergillus oryzae to produce dairy flavors. Secretory and displayed forms of cutinase were investigated using salt-free butter, which is composed mostly of triacylglycerides, as the substrate. The secretory form of cutinase, which was produced in recombinant A. oryzae, was suitable for producing butyric acids (16.8 mol%). Also, cutinase displayed on the cell surface of the yeast Saccharomyces cerevisiae as a fusion protein with α-agglutinin released butyric acid at a 2.7-fold rate (45.4 mol%) higher than that of the secreted form. Yeasts carrying two copies of cutinase genes into their chromosomes, which were constructed using the HELOH method, released free fatty acids rapidly and showed 2-fold higher lipase activity compared with yeasts carrying one copy of the cutinase gene.  相似文献   

13.
A new cutinase from Thermobifida alba (Tha_Cut1) was cloned and characterized for polyethylene terephthalate (PET) hydrolysis. Tha_Cut1 showed a high degree of identity to a T. cellulolysitica cutinase with only four amino acid differences outside the active site area, according to modeling data. Yet, Tha_Cut1 was more active in terms of PET surface hydrolysis leading to considerable improvement in hydrophilicity quantified based on a decrease of the water contact angle from 87.7° to 45.0°. The introduction of new carboxyl groups was confirmed and measured after esterification with the fluorescent reagent alkyl bromide, 2-(bromomethyl) naphthalene (BrNP), resulting in a fluorescence emission intensity increase from 980 to 1420 a.u. On the soluble model substrates p-nitrophenyl acetate (PNPA) and p-nitrophenyl butyrate (PNPB), the cutinase showed Km values of 213 and 1933 μM and kcat values of 2.72 and 6.03 s?1 respectively. The substrate specificity was investigated with bis(benzoyloxyethyl)terephthalate (3PET) and Tha_Cut1 was shown to release primarily 2-hydroxyethyl benzoate. This contrasts with the well-studied Humicula insolens cutinase which preferentially liberates terminal benzoic acid from 3PET.  相似文献   

14.
Protein stabilization was achieved by a novel approach based on the adsorption and establishment of affinity‐like interactions with a biomimetic triazine‐scaffolded ligand. A synthetic lead compound (ligand 3′/11, Ka ≈ 104 M?1) was selected from a previously screened solid‐phase library of affinity ligands for studies of adsorption and stabilization of cutinase from Fusarium solani pisi used as a model system. This ligand, directly synthesized in agarose by a well‐established solid‐phase synthesis method, was able to strongly bind cutinase and led to impressive half‐lives of more than 8 h at 70 °C, and of approximately 34 h at 60 °C for bound protein (a 25‐ and 57‐fold increase as compared with the free enzyme, respectively). The ligand density in the solid matrix was found to be a determinant parameter for cutinase stabilization. It is conceivable that the highly stabilizing effect observed results from the binding of more than one ligand residue to the enzyme, creating specific macromolecular configurations that lock structural mobility thus improving molecular stability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Aggregation agent type and concentration, lipase and glutaraldehyde concentration, and pH are able to affect the formation of cross-linked lipase. The carrier-free immobilized Candida rugosa lipase with a particle size of 40–50 μm showed higher activity than that of the lipase with other particle sizes. The carrier-free immobilized C. rugosa lipase can keep 86% original lipase activity (0.018 g g−1 min−1). The enantioselectivity of the carrier-free immobilized lipase (23.3) was about 1.8 times as much as that of the native lipase (13.0) in kinetic resolution of ibuprofen racemic mixture.  相似文献   

16.
Cutinases comprise a family of esterases with broad hydrolytic activity for chain and pendant ester groups. This work aimed to identify and improve an efficient cutinase for cellulose acetate (CA) deacetylation. The development of a mild method for CA fiber surface deacetylation will result in improved surface hydrophilicity and reactivity while, when combined with cellulases, a route to the full recycling of CA to acetate and glucose. In this study, the comparative CA deacetylation activity of four homologous wild‐type (wt) fungal cutinases from Aspergillus oryzae (AoC), Thiellavia terrestris (TtC), Fusarium solani (FsC), and Humicola insolens (HiC) was determined by analysis of CA deacetylation kinetics. wt‐HiC had the highest catalytic efficiency (≈32 [cm2 L‐1]‐1 h‐1). Comparison of wt‐cutinase catalytic constants revealed that differences in catalytic efficiency are primarily due to corresponding variations in corresponding substrate binding constants. Docking studies with model tetrameric substrates also revealed structural origins for differential substrate binding amongst these cutinases. Comparative docking studies of HiC point mutations led to the identification of two important rationales for engineering cutinases for CA deacetylation: (i) create a tight but not too closed binding groove, (ii) allow for hydrogen bonding in the extended region around the active site. Rationally designed HiC with amino acid substitutions I36S, predicted to hydrogen bond to CA, combined with F70A, predicted to remove steric constraints, showed a two‐fold improvement in catalytic efficiency. Continued cutinase optimization guided by a detailed understanding of structure‐activity relationships, as demonstrated here, will be an important tool to developing practical cutinases for commercial green chemistry technologies.  相似文献   

17.
Intracellular lipase of a strain of Rhizopus fungus which is effective for producing a milk flavor was purified and fractionated into two components, I and II, by DEAE Sephadex A-50 column chromatography. They both proved homogeneous by electrophoresis and ultracentrifugal analysis. The sedimentation coefficient was respectively calculated to be 5.8×10?13 for lipase I, and to be 2.2×10?13 for lipase II. From substrate specificity, it was found that lipase I was an ordinary lipase hydrolyzing olive oil and tributyrin favourably, while, II, rather, a special lipase having a high affinity towards tricaprylin. They, also, respectively had an apparent phospholipase activity on soy-lecithin and, clearing activity on chylomicron prepared from olive oil and human serum. Their mode of action, and the effect of metals and emulsifying agents on their activity are also presented.  相似文献   

18.
The partition behaviour of cutinase on poly(ethylene glycol) (PEG)–hydroxypropyl starch aqueous two-phase systems was characterized. The effect of molecular mass of PEG, the pH of the system and tie-line length on cutinase partition coefficient and cutinase yield to the top phase was investigated for systems prepared with a purified hydroxypropyl starch (Reppal PES 100) and a crude one (HPS). The effect of the presence of different salts, such as sodium chloride, sodium sulphate and ammonium sulphate, on cutinase partition was also studied. The results lead to the conclusion that aqueous two-phase systems composed of PEG and hydroxypropyl starch are not efficient in the purification of cutinase. In the majority of cases, the partition coefficients were very close to 1, with pH being the factor which affects most cutinase partition. Partition coefficients were significantly improved when salts were added to the systems. For PEG 4000–Reppal PES 100 [at pH 4.0; 0.5 M (NH4)2SO4], the partition coefficient for cutinase was 3.7, while a value of 12 was obtained for PEG 4000–HPS (at pH 4.0; 1 M NaCl). An isoelectric point (pI) of 7.8 was confirmed for cutinase by constructing a cross partition graphic from the results obtained in the experiments with different salts.  相似文献   

19.
Four strains of Aspergillus niger were screened for lipase production. Each was cultivated on four different media differing in their contents of mineral components and sources of carbon and nitrogen. Aspergillus niger NRRL3 produced maximal activity (325U/ml) when grown in 3% peptone, 0.05% MgSO4.7H2O, 0.05% KCl, 0.2% K2HPO4 and 1% olive oil:glucose (0.5:0.5). A. niger NRRL3 lipase was partially purified by ammonium sulphate precipitation. The majority of lipase activity (48%) was located in fraction IV precipitated at 50–60% of saturation with a 18-fold enzyme purification. The optimal pH of the partial purified lipase preparation for the hydrolysis of emulsified olive oil was 7.2 and the optimum temperature was 60°C. At 70°C, the enzyme retained more than 90% of its activity. Enzyme activity was inhibited by Hg2+ and K+, whereas Ca2+ and Mn2+ greatly stimulated its activity. Additionally, the formed lipase was stored for one month without any loss in the activity.  相似文献   

20.
High-level extracellular production of Fusarium solani cutinase was achieved using a Pichia pastoris expression system. The cutinase-encoding gene was cloned into pPICZαA with the Saccharomyces cerevisiae α-factor signal sequence and methanol-inducible alcohol oxidase promoter by two different ways. The additional sequences of the c-myc epitope and (His)6-tag of the vector were fused to the C-terminus of cutinase, while the other expression vector was constructed without any additional sequence. P. pastoris expressing the non-tagged cutinase exhibited about two- and threefold higher values of protein amount and cutinase activity in the culture supernatant, respectively. After simple purification by diafiltration process, both cutinases were much the same in the specific activity and the biochemical properties such as the substrate specificity and the effects of temperature and pH. In conclusion, the high-level secretion of F. solani cutinase in P. pastoris was demonstrated for the first time and would be a promising alternative to many expression systems previously used for the large-scale production of F. solani cutinase in Saccharomyces cerevisiae as well as Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号