首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At mechanical equilibrium, articular cartilage is usually characterized as an isotropic elastic material with no interstitial fluid flow. In this study, the equilibrium properties (Young's modulus, aggregate modulus and Poisson's ratio) of bovine humeral, patellar and femoral cartilage specimens (n=26) were investigated using unconfined compression, confined compression, and indentation tests. Optical measurements of the Poisson's ratio of cartilage were also carried out. Mean values of the Young's modulus (assessed from the unconfined compression test) were 0.80+/-0.33, 0.57+/-0.17 and 0.31+/-0.18MPa and of the Poisson's ratio (assessed from the optical test) 0.15+/-0.06, 0.16+/-0.05 and 0.21+/-0.05 for humeral, patellar, and femoral cartilages, respectively. The indentation tests showed 30-79% (p<0.01) higher Young's modulus values than the unconfined compression tests. In indentation, values of the Young's modulus were independent of the indenter diameter only in the humeral cartilage. The mean values of the Poisson's ratio, obtained indirectly using the mathematical relation between the Young's modulus and the aggregate modulus in isotropic material, were 0.16+/-0.06, 0.21+/-0.05, and 0.26+/-0.08 for humeral, patellar, and femoral cartilages, respectively. We conclude that the values of the elastic parameters of the cartilage are dependent on the measurement technique in use. Based on the similar values of Poisson's ratios, as determined directly or indirectly, the equilibrium response of articular cartilage under unconfined and confined compression is satisfactorily described by the isotropic elastic model. However, values of the isotropic Young's modulus obtained from the in situ indentation tests are higher than those obtained from the in vitro unconfined or confined compression tests and may depend on the indenter size in use.  相似文献   

2.
A time- and depth-dependent Poisson’s ratio has been observed during unconfined compression experiments on articular cartilage, but existing cartilage models have not fully addressed these phenomena. The goal of this study was to develop a model which is able to predict and explain these phenomena, while also being able to fit other experimental scenarios on full depth cartilage specimens such as confined and unconfined compressions. A biphasic (poroelastic), fiber-embedded cartilage model was developed. The heterogeneous material properties of the cartilage (aggregate modulus, void ratio tensile modulus) were extracted from reported experiments on individual layers of bovine articular cartilage. The nonlinear permeability material constants were found by fitting the overall response to published experimental data from confined compression. The matrix of the cartilage was modelled as an inhomogeneous isotropic biphasic material with nonlinear strain dependent permeability. Orthotropic layers were added as embedded elements to represent collagen fibers. Material parameters for these layers were derived from tensile tests of different layers of cartilage. With these predefined tensile parameters, the model showed a good fit with multi-step confined and unconfined compression experiments (R2=0.984 and 0.977, respectively) and could also predict the depth-dependent Poisson’s ratio (R2=0.981). The highlight of the model is the ability to explain the time-depth dependent Poisson's ratio and, by association, the strong effect of material inhomogeneity on local stress and strain patterns within the cartilage layer. This material model’s response may provide valuable new insight into potential initiation of cartilage fibrillation or delamination in whole-joint simulations.  相似文献   

3.
A biphasic mixture model is developed that can account for the observed tension-compression nonlinearity of cartilage by employing the continuum-based Conewise Linear Elasticity (CLE) model of Curnier et al. (J. Elasticity, 37, 1-38, 1995) to describe the solid phase of the mixture. In this first investigation, the orthotropic octantwise linear elasticity model was reduced to the more specialized case of cubic symmetry, to reduce the number of elastic constants from twelve to four. Confined and unconfined compression stress-relaxation, and torsional shear testing were performed on each of nine bovine humeral head articular cartilage cylindrical plugs from 6 month old calves. Using the CLE model with cubic symmetry, the aggregate modulus in compression and axial permeability were obtained from confined compression (H-A = 0.64 +/- 0.22 MPa, k2 = 3.62 +/- 0.97 x 10(-16) m4/N.s, r2 = 0.95 +/- 0.03), the tensile modulus, compressive Poisson ratio, and radial permeability were obtained from unconfined compression (E+Y = 12.75 +/- 1.56 MPa, v- = 0.03 +/- 0.01, kr = 6.06 +/- 2.10 x 10(-16) m4/N.s, r2 = 0.99 +/- 0.00), and the shear modulus was obtained from torsional shear (mu = 0.17 +/- 0.06 MPa). The model was also employed to predict the interstitial fluid pressure successfully at the center of the cartilage plug in unconfined compression (r2 = 0.98 +/- 0.01). The results of this study demonstrate that the integration of the CLE model with the biphasic mixture theory can provide a model of cartilage that can successfully curve-fit three distinct testing configurations while producing material parameters consistent with previous reports in the literature.  相似文献   

4.
The depth dependence of material properties of articular cartilage, known as the zonal differences, is incorporated into a nonlinear fibril-reinforced poroelastic model developed previously in order to explore the significance of material heterogeneity in the mechanical behavior of cartilage. The material variations proposed are based on extensive observations. The collagen fibrils are modeled as a distinct constituent which reinforces the other two constituents representing proteoglycans and water. The Young's modulus and Poisson's ratio of the drained nonfibrillar matrix are so determined that the aggregate compressive modulus for confined geometry fits the experimental data. Three nonlinear factors are considered, i.e. the effect of finite deformation, the dependence of permeability on dilatation and the fibril stiffening with its tensile strain. Solutions are extracted using a finite element procedure to simulate unconfined compression tests. The features of the model are then demonstrated with an emphasis on the results obtainable only with a nonhomogeneous model, showing reasonable agreement with experiments. The model suggests mechanical behaviors significantly different from those revealed by homogeneous models: not only the depth variations of the strains which are expected by qualitative analyses, but also, for instance, the relaxation-time dependence of the axial strain which is normally not expected in a relaxation test. Therefore, such a nonhomogeneous model is necessary for better understanding of the mechanical behavior of cartilage.  相似文献   

5.
Compression tests have often been performed to assess the biomechanical properties of full-thickness articular cartilage. We tested whether the apparent homogeneous strain-dependent properties, deduced from such tests, reflect both strain- and depth-dependent material properties. Full-thickness bovine articular cartilage was tested by oscillatory confined compression superimposed on a static offset up to 45%. and the data fit to estimate modulus, permeability, and electrokinetic coefficient assuming homogeneity. Additional tests on partial-thickness cartilage were then performed to assess depth- and strain-dependent properties in an inhomogeneous model, assuming three discrete layers (i = 1 starting from the articular surface, to i = 3 up to the subchondral bone). Estimates of the zero-strain equilibrium confined compression modulus (H(A0)), the zero-strain permeability (kp0) and deformation dependence constant (M), and the deformation-dependent electrokinetic coefficient (ke) differed among individual layers of cartilage and full-thickness cartilage. HiA0 increased from layer 1 to 3 (0.27 to 0.71 MPa), and bracketed the apparent homogeneous value (0.47 MPa). ki(p0) decreased from layer 1 to 3 (4.6 x 10(-15) to 0.50 x 10(-15) m2/Pa s) and was less than the homogeneous value (7.3 x 10(-15) m2/Pa s), while Mi increased from layer 1 to 3 (5.5 to 7.4) and became similar to the homogeneous value (8.4). The amplitude of ki(e) increased markedly with compressive strain, as did the homogeneous value: at low strain, it was lowest near the articular surface and increased to a peak in the middle-deep region. These results help to interpret the biomechanical assessment of full-thickness articular cartilage.  相似文献   

6.
7.
A biphasic-CLE-QLV model proposed in our recent study [2001, J. Biomech. Eng., 123, pp. 410-417] extended the biphasic theory of Mow et al. [1980, J. Biomech. Eng., 102, pp. 73-84] to include both tension-compression nonlinearity and intrinsic viscoelasticity of the cartilage solid matrix by incorporating it with the conewise linear elasticity (CLE) model [1995, J. Elasticity, 37, pp. 1-38] and the quasi-linear viscoelasticity (QLV) model [Biomechanics: Its foundations and objectives, Prentice Hall, Englewood Cliffs, 1972]. This model demonstrates that a simultaneous prediction of compression and tension experiments of articular cartilage, under stress-relaxation and dynamic loading, can be achieved when properly taking into account both flow-dependent and flow-independent viscoelastic effects, as well as tension-compression nonlinearity. The objective of this study is to directly test this biphasic-CLE-QLV model against experimental data from unconfined compression stress-relaxation tests at slow and fast strain rates as well as dynamic loading. Twelve full-thickness cartilage cylindrical plugs were harvested from six bovine glenohumeral joints and multiple confined and unconfined compression stress-relaxation tests were performed on each specimen. The material properties of specimens were determined by curve-fitting the experimental results from the confined and unconfined compression stress relaxation tests. The findings of this study demonstrate that the biphasic-CLE-QLV model is able to describe the strain-rate-dependent mechanical behaviors of articular cartilage in unconfined compression as attested by good agreements between experimental and theoretical curvefits (r2 = 0.966 +/- 0.032 for testing at slow strain rate; r2 = 0.998 +/- 0.002 for testing at fast strain rate) and predictions of the dynamic response (r2 = 0.91 +/- 0.06). This experimental study also provides supporting evidence for the hypothesis that both tension-compression nonlinearity and intrinsic viscoelasticity of the solid matrix of cartilage are necessary for modeling the transient and equilibrium responses of this tissue in tension and compression. Furthermore, the biphasic-CLE-QLV model can produce better predictions of the dynamic modulus of cartilage in unconfined dynamic compression than the biphasic-CLE and biphasic poroviscoelastic models, indicating that intrinsic viscoelasticity and tension-compression nonlinearity of articular cartilage may play important roles in the load-support mechanism of cartilage under physiologic loading.  相似文献   

8.
Boschetti F  Peretti GM 《Biorheology》2008,45(3-4):337-344
Osteoarthritis (OA) is a disease affecting articular cartilage and the underlying bone, resulting from many biological and mechanical interacting factors which change the extracellular matrix (ECM) and cells and lead to increasing levels of cartilage degeneration, like softening, fibrillation, ulceration and cartilage loss. The early diagnosis of the disease is fundamental to prevent pain, further tissue degeneration and reduce hospital costs. Although morphological modifications can be detected by modern non-invasive diagnostic techniques, they may not be evident in the early stages of OA. The mechanical properties of articular cartilage are related to its composition and structure and are sensitive to even small changes in the ECM that could occur in early OA. The aim of the present study was to compare the mechanical properties of healthy and OA cartilage using a combined experimental-numerical approach. Experimental assessments consisted of step wise confined and unconfined compression and tension stress relaxation tests on disks (for compression) or strips (for tension) of cartilage obtained from human femoral heads discarded from the operating room after total hip replacement. The numerical model was based on the biphasic theory and included the tension-compression non-linearity. Considering OA samples vs normal samples, the static compressive modulus was 55-68% lower, the permeability was 60-80% higher, the dynamic compressive modulus was 59-64% lower, the static tension modulus was 72-83% lower. The model successfully simulated the experimental tests performed on healthy and OA cartilage and was used in combination with the experimental tests to evaluate the role of different ECM components in the mechanical response of normal and OA cartilage.  相似文献   

9.
Previous studies have shown that stress relaxation behavior of calf ulnar growth plate and chondroepiphysis cartilage can be described by a linear transverse isotropic biphasic model. The model provides a good fit to the observed unconfined compression transients when the out-of-plane Poisson's ratio is set to zero. This assumption is based on the observation that the equilibrium stress in the axial direction (deltaz) is the same in confined and unconfined compression, which implies that the radial stress deltar = 0 in confined compression. In our study, we further investigated the ability of the transversely isotropic model to describe confined and unconfined stress relaxation behavior of calf cartilage. A series of confined and unconfined stress relaxation tests were performed on calf articular cartilage (4.5 mm diameter, approximately 3.3 mm height) in a displacement-controlled compression apparatus capable of measuring delta(z) and delta(r). In equilibrium, delta(r) > 0 and delta(z) in confined compression was greater than in unconfined compression. Transient data at each strain were fitted by the linear transversely isotropic biphasic model and the material parameters were estimated. Although the model could provide good fits to the unconfined transients, the estimated parameters overpredicted the measured delta(r). Conversely, if the model was constrained to match equilibrium delta(r), the fits were poor. These findings suggest that the linear transversely isotropic biphasic model could not simultaneously describe the observed stress relaxation and equilibrium behavior of calf cartilage.  相似文献   

10.
Li LP  Herzog W 《Biorheology》2004,41(3-4):181-194
The relative importance of fluid-dependent and fluid-independent transient mechanical behavior in articular cartilage was examined for tensile and unconfined compression testing using a fibril reinforced model. The collagen matrix of articular cartilage was modeled as viscoelastic using a quasi-linear viscoelastic formulation with strain-dependent elastic modulus, while the proteoglycan matrix was considered as linearly elastic. The collagen viscoelastic properties were obtained by fitting experimental data from a tensile test. These properties were used to investigate unconfined compression testing, and the sensitivity of the properties was also explored. It was predicted that the stress relaxation observed in tensile tests was not caused by fluid pressurization at the macroscopic level. A multi-step tensile stress relaxation test could be approximated using a hereditary integral in which the elastic fibrillar modulus was taken to be a linear function of the fibrillar strain. Applying the same formulation to the radial fibers in unconfined compression, stress relaxation could not be simulated if fluid pressurization were absent. Collagen viscoelasticity was found to slightly weaken fluid pressurization in unconfined compression, and this effect was relatively more significant at moderate strain rates. Therefore, collagen viscoelasticity appears to play an import role in articular cartilage in tensile testing, while fluid pressurization dominates the transient mechanical behavior in compression. Collagen viscoelasticity plays a minor role in the mechanical response of cartilage in unconfined compression if significant fluid flow is present.  相似文献   

11.
The compressive stiffness of an elastic material is traditionally characterized by its Young's modulus. Young's modulus of articular cartilage can be directly measured using unconfined compression geometry by assuming the cartilage to be homogeneous and isotropic. In isotropic materials, Young's modulus can also be determined acoustically by the measurement of sound speed and density of the material. In the present study, acoustic and mechanical techniques, feasible for in vivo measurements, were investigated to quantify the static and dynamic compressive stiffness of bovine articular cartilage in situ. Ultrasound reflection from the cartilage surface, as well as the dynamic modulus were determined with the recently developed ultrasound indentation instrument and compared with the reference mechanical and ultrasound speed measurements in unconfined compression (n=72). In addition, the applicability of manual creep measurements with the ultrasound indentation instrument was evaluated both experimentally and numerically. Our experimental results indicated that the sound speed could predict 47% and 53% of the variation in the Young's modulus and dynamic modulus of cartilage, respectively. The dynamic modulus, as determined manually with the ultrasound indentation instrument, showed significant linear correlations with the reference Young's modulus (r(2)=0.445, p<0.01, n=70) and dynamic modulus (r(2)=0.779, p<0.01, n=70) of the cartilage. Numerical analyses indicated that the creep measurements, conducted manually with the ultrasound indentation instrument, were sensitive to changes in Young's modulus and permeability of the tissue, and were significantly influenced by the tissue thickness. We conclude that acoustic parameters, i.e. ultrasound speed and reflection, are indicative to the intrinsic mechanical properties of the articular cartilage. Ultrasound indentation instrument, when further developed, provides an applicable tool for the in vivo detection of cartilage mechano-acoustic properties. These techniques could promote the diagnostics of osteoarthrosis.  相似文献   

12.
Mechanical function of articular cartilage in joints between articulating bones is dependent on the composition and structure of the tissue. The mechanical properties of articular cartilage are traditionally tested in compression using one of the three loading geometries, i.e., confined compression, unconfined compression or indentation. The aim of this study was to utilize a composition-based finite element model in combination with a fractional factorial design to determine the importance of different cartilage constituents in the mechanical response of the tissue, and to compare the importance of the tissue constituents with different loading geometries and loading rates. The evaluated parameters included water and collagen fraction as well as fixed charge density on cartilage surface and their slope over the tissue thickness. The thicknesses of superficial and middle zones, as based on the collagen orientation, were also included in the evaluated parameters. A three-level resolution V fractional factorial design was used. The model results showed that inhomogeneous composition plays only a minor role in indentation, though that role becomes more significant in confined compression and unconfined compression. In contrast, the collagen architecture and content had a more profound role in indentation than with two other loading geometries. These differences in the mechanical role of composition and structure between the loading geometries were emphasized at higher loading rates. These findings highlight how the results from mechanical tests of articular cartilage under different loading conditions are dependent upon tissue composition and structure.  相似文献   

13.
14.
Experimental evidence suggests that the biosynthetic activity of chondrocytes is regulated primarily by the mechanical environment. In order to study the mechanisms underlying remodeling, adaptation, and degeneration of articular cartilage in a joint subjected to changing loads, it is important to know the time-dependent fluid pressure and stress-strain state in chondrocytes. The purpose of the present study was to develop a theoretical model to simulate the mechanical behaviour of articular cartilage and to describe the time-dependent stress-strain state and fluid pressure distribution in chondrocytes during cartilage deformation. It was assumed that the volume occupied by the chondrocytes is small and that cartilage can be treated as a macroscopically homogenized material with effective material properties which depend on the material properties of the cells and matrix and the volumetric fraction of the cells. Model predictions on the time-dependent distribution of fluid pressure and stress and on the time-dependent cell deformation during confined and unconfined compression tests agree with previous theoretical predictions and experimental observations. The proposed model supplies the tools to study the mechanisms of degeneration, adaptation and remodelling of cartilage associated with cell loading and deformation.  相似文献   

15.
The biphasic poroviscoelastic (BPVE) model was curve fit to the simultaneous relaxation of reaction force and lateral displacement exhibited by articular cartilage in unconfined compression (n=18). Model predictions were also made for the relaxation observed in reaction force during indentation with a porous plane-ended metal indenter (n=4), indentation with a nonporous plane ended metal indenter (n=4), and during confined compression (n=4). Each prediction was made using material parameters resulting from curve fits of the unconfined compression response of the same tissue. The BPVE model was able to account for both the reaction force and the lateral displacement during unconfined compression very well. Furthermore, model predictions for both indentation and confined compression also followed the experimental data well. These results provide substantial evidence for the efficacy of the biphasic poroviscoelastic model for articular cartilage, as no successful cross-validation of a model simulation has been demonstrated using other mathematical models.  相似文献   

16.
Models of post-traumatic osteoarthritis where early degenerative changes can be monitored are valuable for assessing potential therapeutic strategies. Current methods for evaluating cartilage mechanical properties may not capture the low-grade cartilage changes expected at these earlier time points following injury. In this study, an explant model of cartilage injury was used to determine whether streaming potential measurements by manual indentation could detect cartilage changes immediately following mechanical impact and to compare their sensitivity to biomechanical tests. Impacts were delivered ex vivo, at one of three stress levels, to specific positions on isolated adult equine trochlea. Cartilage properties were assessed by streaming potential measurements, made pre- and post-impact using a commercially available arthroscopic device, and by stress relaxation tests in unconfined compression geometry of isolated cartilage disks, providing the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Histological sections were stained with Safranin-O and adjacent unstained sections examined in polarized light microscopy. Impacts were low, 17.3?±?2.7 MPa (n?=?15), medium, 27.8?±?8.5 MPa (n?=?13), or high, 48.7?±?12.1 MPa (n?=?16), and delivered using a custom-built spring-loaded device with a rise time of approximately 1 ms. SPI was significantly reduced after medium (p?=?0.006) and high (p<0.001) impacts. Ef, representing collagen network stiffness, was significantly reduced in high impact samples only (p?相似文献   

17.
Very limited information is currently available on the constitutive modeling of the tensile response of articular cartilage and its dynamic modulus at various loading frequencies. The objectives of this study were to (1) formulate and experimentally validate a constitutive model for the intrinsic viscoelasticity of cartilage in tension, (2) confirm the hypothesis that energy dissipation in tension is less than in compression at various loading frequencies, and (3) test the hypothesis that the dynamic modulus of cartilage in unconfined compression is dependent upon the dynamic tensile modulus. Experiment 1: Immature bovine articular cartilage samples were tested in tensile stress relaxation and cyclical loading. A proposed reduced relaxation function was fitted to the stress-relaxation response and the resulting material coefficients were used to predict the response to cyclical loading. Adjoining tissue samples were tested in unconfined compression stress relaxation and cyclical loading. Experiment 2: Tensile stress relaxation experiments were performed at varying strains to explore the strain-dependence of the viscoelastic response. The proposed relaxation function successfully fit the experimental tensile stress-relaxation response, with R2 = 0.970+/-0.019 at 1% strain and R2 = 0.992+/-0.007 at 2% strain. The predicted cyclical response agreed well with experimental measurements, particularly for the dynamic modulus at various frequencies. The relaxation function, measured from 2% to 10% strain, was found to be strain dependent, indicating that cartilage is nonlinearly viscoelastic in tension. Under dynamic loading, the tensile modulus at 10 Hz was approximately 2.3 times the value of the equilibrium modulus. In contrast, the dynamic stiffening ratio in unconfined compression was approximately 24. The energy dissipation in tension was found to be significantly smaller than in compression (dynamic phase angle of 16.7+/-7.4 deg versus 53.5+/-12.8 deg at 10(-3) Hz). A very strong linear correlation was observed between the dynamic tensile and dynamic compressive moduli at various frequencies (R2 = 0.908+/-0.100). The tensile response of cartilage is nonlinearly viscoelastic, with the relaxation response varying with strain. A proposed constitutive relation for the tensile response was successfully validated. The frequency response of the tensile modulus of cartilage was reported for the first time. Results emphasize that fluid-flow dependent viscoelasticity dominates the compressive response of cartilage, whereas intrinsic solid matrix viscoelasticity dominates the tensile response. Yet the dynamic compressive modulus of cartilage is critically dependent upon elevated values of the dynamic tensile modulus.  相似文献   

18.
The finite element method using the principle of virtual work was applied to the biphasic theory to establish a numerical routine for analyses of articular cartilage behavior. The matrix equations that resulted contained displacements of the solid matrix (mu) and true fluid pressure (p) as the unknown variables at the element nodes. Both small and large strain conditions were considered. The algorithms and computer code for the analysis of two-dimensional plane strain, plane stress, and axially symmetric cases were developed. The u-p finite element numerical procedure demonstrated excellent agreement with available closed-form and numerical solutions for the configurations of confined compression and unconfined compression under small strains, and for confined compression under large strains. The model was also used to examine the behavior of a repaired articular surface. The differences in material properties between the repair tissue and normal cartilage resulted in significant deformation gradients across the repair interface as well as increased fluid efflux from the tissue.  相似文献   

19.
Mixture models have been successfully used to describe the response of articular cartilage to various loading conditions. Mow et al. (J. Biomech. Eng. 102 (1980) 73) formulated a biphasic mixture model of articular cartilage where the collagen-proteoglycan matrix is modeled as an intrinsically incompressible porous-permeable solid matrix, and the interstitial fluid is modeled as an incompressible fluid. Lai et al. (J. Biomech. Eng. 113 (1991) 245) proposed a triphasic model of articular cartilage as an extension of their biphasic theory, where negatively charged proteoglycans are modeled to be fixed to the solid matrix, and monovalent ions in the interstitial fluid are modeled as additional fluid phases. Since both models co-exist in the cartilage literature, it is useful to show how the measured properties of articular cartilage (the confined and unconfined compressive and tensile moduli, the compressive and tensile Poisson's ratios, and the shear modulus) relate to both theories. In this study, closed-form expressions are presented that relate biphasic and triphasic material properties in tension, compression and shear. These expressions are then compared to experimental findings in the literature to provide greater insight into the measured properties of articular cartilage as a function of bathing solutions salt concentrations and proteoglycan fixed-charge density.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号