共查询到20条相似文献,搜索用时 0 毫秒
1.
Meyer AJ Brach T Marty L Kreye S Rouhier N Jacquot JP Hell R 《The Plant journal : for cell and molecular biology》2007,52(5):973-986
The cellular glutathione redox buffer is assumed to be part of signal transduction pathways transmitting environmental signals during biotic and abiotic stress, and thus is essential for regulation of metabolism and development. Ratiometric redox-sensitive GFP (roGFP) expressed in Arabidopsis thaliana reversibly responds to redox changes induced by incubation with H(2)O(2) or DTT. Kinetic analysis of these redox changes, combined with detailed characterization of roGFP2 in vitro, shows that roGFP2 expressed in the cytosol senses the redox potential of the cellular glutathione buffer via glutaredoxin (GRX) as a mediator of reversible electron flow between glutathione and roGFP2. The sensitivity of roGFP2 toward the glutathione redox potential was tested in vivo through manipulating the glutathione (GSH) content of wild-type plants, through expression of roGFP2 in the cytosol of low-GSH mutants and the endoplasmic reticulum (ER) of wild-type plants, as well as through wounding as an example for stress-induced redox changes. Provided the GSH concentration is known, roGFP2 facilitates the determination of the degree of oxidation of the GSH solution. Assuming sufficient glutathione reductase activity and non-limiting NADPH supply, the observed almost full reduction of roGFP2 in vivo suggests that a 2.5 mm cytosolic glutathione buffer would contain only 25 nm oxidized glutathione disulfide (GSSG). The high sensitivity of roGFP2 toward GSSG via GRX enables the use of roGFP2 for monitoring stress-induced redox changes in vivo in real time. The results with roGFP2 as an artificial GRX target further suggest that redox-triggered changes of biologic processes might be linked directly to the glutathione redox potential via GRX as the mediator. 相似文献
2.
Thomas Höfken Dietmar Linder Ralf Kleene Burkhard Göke Andreas C.C. Wagner 《Experimental cell research》1998,244(2):481
Membrane proteins of highly purified porcine zymogen granules were separated by two-dimensional gel electrophoresis in order to isolate proteins which are involved in intracellular trafficking of digestive enzymes in the exocrine pancreas. A 48-kDa glycoprotein was a major component in membrane preparations washed with 0.1 M Na2CO3and 0.5 M NaCl. By N-terminal amino acid sequencing this protein was identified as membrane dipeptidase (MDP; EC 3.4.13.19). MDP mRNA levels in rat pancreas were increased threefold by feeding rats with FOY-305, which is a known stimulus of endogenous cholecystokinin release from the gut. Cholecystokinin then stimulates secretion in pancreatic acinar cells. In another set of experiments treatment of the rat pancreatic acinar tumor cell line AR42J with dexamethasone led to an eightfold increase in the expression of MDP. Thus, the expression pattern of the MDP gene in response to hormonal stimulationin vivoandin vitroresembles those found for most of the enzymes and proteins which are involved in secretion. Since MDP has been thought to have a role in glutathione (GSH) metabolism, we also measured GSH concentration in zymogen granules and found high levels of GSH. Based on our data we propose a working model for the function of MDP. According to this model, MDP might play a pivotal role in maintaining the oxidizing conditions in the ER, which are required for the correct folding of secretory proteins. 相似文献
3.
4.
《Molecular membrane biology》2013,30(5):177-185
AbstractSorting of membrane proteins in eukaryotic cells is a complex yet vital task that involves several 10,000 molecular players. Sorting takes place not only along the early secretory pathway, i.e., between the endoplasmic reticulum and the Golgi apparatus, but also between other organelles, including exchange with the cell's plasma membrane. Traditionally, specific binary interactions between proteins have been made responsible for most of the protein sorting. A more active role of lipids, however, became visible in recent years. Not only do lipids in complex membranes show domain formation that may support/suppress sorting events, but also collective, membrane-mediated interactions have emerged as a robust physico-chemical mechanism to drive protein sorting. Here, we will review recent insights into these aspects. 相似文献
5.
Hao Wang Yu C. Tse Angus H.Y. Law Samuel S.M. Sun Yong‐Bin Sun Zeng‐Fu Xu Stefan Hillmer David G. Robinson Liwen Jiang 《The Plant journal : for cell and molecular biology》2010,61(5):826-838
Vacuolar sorting receptors (VSRs) are type‐I integral membrane proteins that mediate biosynthetic protein traffic in the secretory pathway to the vacuole, whereas secretory carrier membrane proteins (SCAMPs) are type‐IV membrane proteins localizing to the plasma membrane and early endosome (EE) or trans‐Golgi network (TGN) in the plant endocytic pathway. As pollen tube growth is an extremely polarized and highly dynamic process, with intense anterograde and retrograde membrane trafficking, we have studied the dynamics and functional roles of VSR and SCAMP in pollen tube growth using lily (Lilium longiflorum) pollen as a model. Using newly cloned lily VSR and SCAMP cDNA (termed LIVSR and LISCAMP, respectively), as well as specific antibodies against VSR and SCAMP1 as tools, we have demonstrated that in growing lily pollen tubes: (i) transiently expressed GFP‐VSR/GFP‐LIVSR is located throughout the pollen tubes, excepting the apical clear‐zone region, whereas GFP‐LISCAMP is mainly concentrated in the tip region; (ii) VSRs are localized to the multivesicular body (MVB) and vacuole, whereas SCAMPs are localized to apical endocytic vesicles, TGN and vacuole; and (iii) microinjection of VSR or SCAMP antibodies and LlVSR small interfering RNAs (siRNAs) significantly reduced the growth rate of the lily pollen tubes. Taken together, both VSR and SCAMP are required for pollen tube growth, probably working together in regulating protein trafficking in the secretory and endocytic pathways, which need to be coordinated in order to support pollen tube elongation. 相似文献
6.
Ramu S. Saravanan Erin Slabaugh Vijay R. Singh Lisa J. Lapidus Thomas Haas Federica Brandizzi 《The Plant journal : for cell and molecular biology》2009,58(5):817-830
In plants, sterols play fundamental roles as membrane constituents in the biosynthesis of steroid hormones, and act as precursors for cell wall deposition. Sterols are synthesized in the endoplasmic reticulum (ER), but mainly accumulate in the plasma membrane. How sterols are trafficked in plant cells is largely unknown. In non-plant systems, oxysterol-binding proteins have been involved in sterol trafficking and homeostasis. There are at least twelve homologs of oxysterol-binding proteins in the Arabidopsis genome, but the biology of these proteins remains for the most part obscure. Here, we report our analysis of the targeting requirements and the sterol-binding properties of a small Arabidopsis oxysterol-binding protein, ORP3a. We have determined that ORP3a is a bona fide sterol-binding protein with sitosterol-binding properties. Live-cell imaging analyses revealed that ORP3a is localized at the ER, and that binding to this organelle depends on a direct interaction with PVA12, a member of the largely uncharacterized VAP33 family of plant proteins. Molecular modeling analyses and site-directed mutagenesis led to the identification of a novel protein domain that is responsible for the PVA12–ORP3a interaction. Disruption of the integrity of this domain caused redistribution of ORP3a to the Golgi apparatus, suggesting that ORP3a may cycle between the ER and the Golgi. These results represent new insights into the biology of sterol-binding proteins in plant cells, and elucidate a hitherto unknown relationship between members of oxysterol-binding protein and VAP33 families of plant proteins in the early plant secretory pathway. 相似文献
7.
Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. 总被引:6,自引:7,他引:6
下载免费PDF全文

M. Wunderlich R. Glockshuber 《Protein science : a publication of the Protein Society》1993,2(5):717-726
The redox properties of periplasmic protein disulfide isomerase (DsbA) from Escherichia coli were analyzed by measuring the equilibrium constant of the oxidation of reduced DsbA by oxidized glutathione. The experiments are based on the finding that the intrinsic tryptophan fluorescence of DsbA increases about threefold upon reduction of the enzyme, which can be explained by the catalytic disulfide bridge quenching the fluorescence of a neighboring tryptophan residue. From the specific fluorescence of DsbA equilibrated in the presence of different ratios of reduced and oxidized glutathione at pH 7, an equilibrium constant of 1.2 x 10(-4) M was determined, corresponding to a standard redox potential (E'0) of DsbA of -0.089 V. Thus, DsbA is a significantly stronger oxidant than cytoplasmic thioredoxins and its redox properties are similar to those of eukaryotic protein disulfide isomerase. The equilibrium constants for the DsbA/glutathione equilibrium were found to be strongly dependent on pH and varied from 2.5 x 10(-3) M to 3.9 x 10(-5) M between pH 4 and 8.5. The redox state-dependent fluorescence properties of DsbA should allow detailed physicochemical studies of the enzyme as well as the quantitative determination of the oxidized protein by fluorescence titration with dithiothreitol and open the possibility to observe bacterial protein disulfide isomerase "at work" during catalysis of oxidative protein folding. 相似文献
8.
Redox-sensitive variants of the green fluorescent protein (roGFPs) had previously been developed that allow \"real-time\" monitoring of the redox status of cellular compartments by fluorescence excitation ratiometry. However, the response time of these probes limits the study of certain rapid oxidative events, such as H2O2 bursts in cell signaling. The substitution of up to three positively charged amino acids adjacent to the introduced disulfide in roGFP1 (variants designated roGFP1-R1 through -R14) substantially improved the response rate. The pseudo first-order rate constants for oxidation by H2O2 and reduction by DTT and redox midpoint potentials were determined. The rate constants approximately doubled with each additional positively charged substitution, to nearly an order of magnitude total. The midpoint potentials are highly correlated with the rate increases, becoming more oxidizing with increasing numbers of positive substitutions. Crystal structures of two variants with opposite disulfide oxidation states have been determined: a 2.2 A resolution structure of oxidized \"R7\" containing two basic substitutions, and a 1.95 A resolution structure of reduced \"R8\" with one basic and one acidic substitution. Nonlinear Poisson-Boltzmann (PB) calculations are shown to accurately predict the effects of the substitutions on the rate constants. The effects of the substitutions on dimer formation, relative oxidative midpoint potentials, and oxidation and reduction rates are discussed. roGFPs are demonstrated to constitute an excellent model system for quantitative analysis of factors influencing thiol transfer reactions. roGFP1-R12 is most suitable for use in live cells, due to significantly increased reaction rate and increased pI. 相似文献
9.
Yuasa K Toyooka K Fukuda H Matsuoka K 《The Plant journal : for cell and molecular biology》2005,41(1):81-94
We cloned a novel prolyl 4-hydroxylase (PH; EC 1.14.11.2) homolog cDNA from tobacco (Nicotiana tabacum) BY-2 cells based on expression sequence tag information. Like other PHs, this tobacco PH polypeptide has two conserved histidine residues, and it comprises 286 amino acids with a calculated molecular mass of 32 kDa. Interestingly, this protein and homologs in Arabidopsis and rice have predicted transmembrane sequences in their N-terminal regions. This PH homolog was expressed in BY-2 cells as a His-tagged protein, and the expressed protein showed PH activity. Incubation of membranes with high salt, urea, and protease with or without detergents indicated that this protein is an integral membrane protein with a type II configuration. Its membrane-anchored nature is specific for plants because no integral membrane PH has been found in animals. A membrane fractionation study and immunocytochemical studies indicate that this protein localizes in both the endoplasmic reticulum (ER) and Golgi apparatus. Analysis of this protein fused to green fluorescent protein indicated that basic amino acids in the cytoplasmic, N-terminal region of the PH play a role in its export from the ER. 相似文献
10.
Autophagy is a survival mechanism necessary for eukaryotic cells to overcome nutritionally challenged environments. When autophagy is triggered, cells degrade nonselectively engulfed cytosolic proteins and free ribosomes that are evenly distributed throughout the cytoplasm. The resulting pool of free amino acids is used to sustain processes crucial for survival. Here we characterize an autophagic degradation of the endoplasmic reticulum (ER) under starvation conditions in addition to cytosolic protein degradation. Golgi membrane protein was not engulfed by the autophagosome under the same conditions, indicating that the uptake of ER by autophagosome was the specific event. Although the ER exists in a network structure that is mutually connected and resides predominantly around the nucleus and beneath the plasma membrane, most of autophagosome engulfed ER. The extent of the ER uptake by autophagy was nearly identical to that of the soluble cytosolic proteins. This phenomenon was explained by the appearance of fragmented ER membrane structures in almost all autophagosomes. Furthermore, ER dynamism is required for this process: ER uptake by autophagosomes occurs in an actin-dependent manner. 相似文献
11.
Julie Kengen Jean-Philippe Deglasse Marie-Aline Neveu Lionel Mignion Céline Desmet Florian Gourgue 《Free radical research》2018,52(2):256-266
The ability of certain cancer cells to maintain a highly reduced intracellular environment is correlated with aggressiveness and drug resistance. Since the glutathione (GSH) and thioredoxin (TRX) systems cooperate to a tight regulation of ROS in cell physiology, and to a stimulation of tumour initiation and progression, modulation of the GSH and TRX pathways are emerging as new potential targets in cancer. In vivo methods to assess changes in tumour redox status are critically needed to assess the relevance of redox-targeted agents. The current study assesses in vitro and in vivo biomarkers of tumour redox status in response to treatments targeting the GSH and TRX pathways, by comparing cytosolic and mitochondrial redox nitroxide electron paramagnetic resonance (EPR) probes, and cross-validation with redox dynamic fluorescent measurement. For that purpose, the effect of the GSH modulator buthionine sulfoximine (BSO) and of the TRX reductase inhibitor auranofin were measured in vitro using both cytosolic and mitochondrial EPR and roGFP probes in breast and cervical cancer cells. In vivo, mice bearing breast or cervical cancer xenografts were treated with the GSH or TRX modulators and monitored using the mito-TEMPO spin probe. Our data highlight the importance of using mitochondria-targeted spin probes to assess changes in tumour redox status induced by redox modulators. Further in vivo validation of the mito-tempo spin probe with alternative in vivo methods should be considered, yet the spin probe used in vivo in xenografts demonstrated sensitivity to the redox status modulators. 相似文献
12.
Nicholas B. Woodall Sarah Hadley Ying Yin James U. Bowie 《Protein science : a publication of the Protein Society》2017,26(4):824-833
The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C‐terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental. 相似文献
13.
14.
We have carried out detailed statistical analyses of integral membrane proteins of the helix-bundle class from eubacterial, archaean, and eukaryotic organisms for which genome-wide sequence data are available. Twenty to 30% of all ORFs are predicted to encode membrane proteins, with the larger genomes containing a higher fraction than the smaller ones. Although there is a general tendency that proteins with a smaller number of transmembrane segments are more prevalent than those with many, uni-cellular organisms appear to prefer proteins with 6 and 12 transmembrane segments, whereas Caenorhabditis elegans and Homo sapiens have a slight preference for proteins with seven transmembrane segments. In all organisms, there is a tendency that membrane proteins either have many transmembrane segments with short connecting loops or few transmembrane segments with large extra-membraneous domains. Membrane proteins from all organisms studied, except possibly the archaeon Methanococcus jannaschii, follow the so-called \"positive-inside\" rule; i.e., they tend to have a higher frequency of positively charged residues in cytoplasmic than in extra-cytoplasmic segments. 相似文献
15.
Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (E(GSH)) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with E(GSH)-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of E(GSH) in the IMS, thus explaining a steady-state E(GSH) in the IMS which is similar to the cytosol. Moreover, we show that the local E(GSH) contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. 相似文献
16.
Konstantin A. Lukyanov Vsevolod V. Belousov 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Life is a constant flow of electrons via redox couples. Redox reactions determine many if not all major cellular functions. Until recently, redox processes remained hidden from direct observation in living systems due to the lack of adequate methodology. Over the last years, imaging tools including small molecule probes and genetically encoded sensors appeared, which provided, for the first time, an opportunity to visualize and, in some cases, quantify redox reactions in live cells. Genetically encoded fluorescent redox probes, such as HyPer, rxYFP and roGFPs, have been used in several models, ranging from cultured cells to transgenic animals, and now enough information has been collected to highlight advantages and pitfalls of these probes.Scope of review
In this review, we describe the main types of genetically encoded redox probes, their essential properties, advantages and disadvantages. We also provide an overview of the most important, in our opinion, results obtained using these probes. Finally, we discuss redox-dependent photoconversions of GFP and other prospective directions in redox probe development.Major conclusions
Fluorescent protein-based redox probes have important advantages such as high specificity, possibility of transgenesis and fine subcellular targeting. For proper selection of a redox sensor for a particular model, it is important to understand that HyPer and roGFP2-Orp1 are the probes for H2O2, whereas roGFP1/2, rxYFP and roGFP2-Grx1 are the probes for GSH/GSSG redox state. Possible pH changes should be carefully controlled in experiments with HyPer and rxYFP.General significance
Genetically encoded redox probes are the only instruments allowing real-time monitoring of reactive oxygen species and thiol redox state in living cells and tissues. We believe that in the near future the palette of FP-based redox probes will be expanded to red and far-red parts of the spectrum and to other important reactive species such as NO, O2 and superoxide. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. 相似文献17.
A theoretical investigation of the protein contribution to the redox potential of the iron–sulfur protein rubredoxin is presented. Structures of the oxidized and reduced forms of the protein were obtained by energy minimizing the oxidized crystal structure of Clostridium pasteurianum rubredoxin with appropriate charges and parameters. By including 102 crystal waters, structures close to the original crystal structure were obtained (rms difference of 1.16 Å), even with extensive minimization, thus allowing accurate calculations of comparative energies. Our calculations indicate an energy change of about –60 kcal/mol (2.58 eV) in the protein alone upon reduction. This energy change was due to both the change in charge of the redox site and the subsequent relaxation of the protein. An energy minimization procedure for the relaxation gives rms differences between the oxidized and reduced states of about 0.2 Å. The changes were small and occurred in both the backbone and sidechain mainly near the Fe–S center but contributed about – 16 kcal/mol (0.69 eV) to the total protein contribution. Although the neglect of certain effects such as electronic polarization may make the relaxation energies calculated an upper limit, the results indicate that protein relaxation contributes substantially to the redox potential. © 1993 Wiley-Liss, Inc. 相似文献
18.
We have developed reliability scores for five widely used membrane protein topology prediction methods, and have applied them both on a test set of 92 bacterial plasma membrane proteins with experimentally determined topologies and on all predicted helix bundle membrane proteins in three fully sequenced genomes: Escherichia coli, Saccharomyces cerevisiae and Caenorhabditis elegans. We show that the reliability scores work well for the TMHMM and MEMSAT methods, and that they allow the probability that the predicted topology is correct to be estimated for any protein. We further show that the available test set is biased towards high-scoring proteins when compared to the genome-wide data sets, and provide estimates for the expected prediction accuracy of TMHMM across the three genomes. Finally, we show that the performance of TMHMM is considerably better when limited experimental information (such as the in/out location of a protein's C terminus) is available, and estimate that at least ten percentage points in overall accuracy in whole-genome predictions can be gained in this way. 相似文献
19.
Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green fluorescent protein-based redox probe termed redox sensitive YFP (rxYFP). Using yeast with genetically manipulated GSSG levels, we find that rxYFP equilibrates with the cytosolic glutathione redox buffer. Furthermore, in vivo and in vitro data show the equilibration to be catalyzed by glutaredoxins and that conditions of high intracellular GSSG confer to these a new role as dithiol oxidases. For the first time a genetically encoded probe is used to determine the redox potential specifically of cytosolic glutathione. We find it to be -289 mV, indicating that the glutathione redox status is highly reducing and corresponds to a cytosolic GSSG level in the low micromolar range. Even under these conditions a significant fraction of rxYFP is oxidized. 相似文献
20.
《Free radical research》2013,47(9):1081-1094
AbstractThe imbalance between reactive oxygen species (ROS) production and their elimination by antioxidants leads to oxidative stress. Depending on their concentration, ROS can trigger apoptosis or stimulate cell proliferation. We hypothesized that oxidative stress and mitochondrial dysfunction may participate not only in apoptosis detected in some myelodysplastic syndrome (MDS) patients, but also in increasing proliferation in other patients. We investigated the involvement of oxidative stress and mitochondrial dysfunction in MDS pathogenesis, as well as assessed their diagnostic and prognostic values. Intracellular peroxides, superoxide, superoxide/peroxides ratio, reduced glutathione (GSH), and mitochondrial membrane potential (Δψmit) levels were analyzed in bone marrow cells from 27 MDS patients and 12 controls, by flow cytometry. We observed that all bone marrow cell types from MDS patients had increased intracellular peroxide levels and decreased GSH content, compared with control cells. Moreover, oxidative stress levels were MDS subtype— and risk group—dependent. Low-risk patients had the highest ROS levels, which can be related with their high apoptosis; and intermediate-2-risk patients had high Δψmit that may be associated with their proliferative potential. GSH levels were negatively correlated with transfusion dependency, and peroxide levels were positively correlated with serum ferritin level. GSH content proved to be an accurate parameter to discriminate patients from controls. Finally, patients with high ROS or low GSH levels, as well as high superoxide/peroxides ratio had lower overall survival. Our results suggest that oxidative stress and mitochondrial dysfunction are involved in MDS development, and that oxidative stress parameters may constitute novel diagnosis and/or prognosis biomarkers for MDS. 相似文献