首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA typing and genetic mapping with trimeric and tetrameric tandem repeats.   总被引:111,自引:19,他引:111       下载免费PDF全文
Tandemly reiterated sequences represent a rich source of highly polymorphic markers for genetic linkage, mapping, and personal identification. Human trimeric and tetrameric short tandem repeats (STRs) were studied for informativeness, frequency, distribution, and suitability for DNA typing and genetic mapping. The STRs were highly polymorphic and inherited stably. A STR-based multiplex PCR for personal identification is described. It features fluorescent detection of amplified products on sequencing gels, specific allele identification, simultaneous detection of independent loci, and internal size standards. Variation in allele frequencies were explored for four U.S. populations. The three STR loci (chromosomes 4, 11, and X) used in the fluorescent multiplex PCR have a combined average individualization potential of 1/500 individuals. STR loci appear common, being found every 300-500 kb on the X chromosome. The combined frequency of polymorphic trimeric and tetrameric STRs could be as high as 1 locus/20 kb. The markers should be useful for genetic mapping, as they are sequence based, and can be multiplexed with the PCR. A method enabling rapid localization of STRs and determination of their flanking DNA sequences was developed, thus simplifying the identification of polymorphic STR loci. The ease by which STRs may be identified, as well as their genetic and physical mapping utility, give them the properties of useful sequence tagged sites (STSs) for the human genome initiative.  相似文献   

2.
The ability to genotype multiple loci of single cells would be of significant benefit to investigations of cellular processes such as oncogenesis, meiosis, fertilization, and embryogenesis. We report a simple two-step, single-tube protocol for whole-genome amplification (WGA) from single human cells using components of the GenomiPhi V2 DNA Amplification kit. For the first time, we demonstrate reliable generation of 4-7 microg amplified DNA from a single human cell within 4 h with a minimum amount of artifactual DNA synthesis. DNA amplified from single cells was genotyped for 13 heterozygous short tandem repeats (STRs) and 7 heterozygous single nucleotide polymorphisms (SNPs), and the genotyping results were compared with purified genomic DNA. Accuracy of genotyping (percent of single-cell amplifications genotyped accurately for any particular STR or SNP) varied from 37% to 100% (with an average of 80%) for STRs and from 89% to 100% (averaging 94%) for SNPs. We suggest that the method described in this report is suitable for WGA from single cells, the product of which can be subsequently used for many applications, such as preimplantation genetic analysis (PGD).  相似文献   

3.
A brief review of short tandem repeat mutation   总被引:1,自引:0,他引:1  
Short tandem repeats (STRs) are short tandemly repeated DNA sequences that involve a repetitive unit of 1-6 bp. Because of their polymorphisms and high mutation rates, STRs are widely used in biological research. Strand-slippage replication is the predominant mutation mechanism of STRs, and the stepwise mutation model is regarded as the main mutation model. STR mutation rates can be influenced by many factors. Moreover, some trinucleotide repeats are associated with human neurodegenerative diseases. In order to deepen our knowledge of these diseases and broaden STR application, it is essential to understand the STR mutation process in detail. In this review, we focus on the current known information about STR mutation.  相似文献   

4.
After initially slow progress in identifying DNA polymorphisms on the non recombining part of the human Y chromosome, a large number of polymorphic markers are now available to define individual or population-specific haplotypes or haplogroups. Among them the Y-chromosomal STRs (Short Tandem Repeats) have been increasingly used over the past few years for the study of human evolution as well as for human identification in forensic case-work and paternity testing. After a brief summary of the features of such markers, this paper deals with some applications of the Y-STR haplotyping.  相似文献   

5.
The human genome contains one short tandem repeat (STR) roughly every 2,000 base pairs. They are particularly useful markers for gene mapping and disease association studies due to their high degree of polymorphism and ubiquitous frequency throughout the genome. The major histocompatibility complex (MHC) has been the focus of many disease association studies, and the recent availability of the entire sequence of the complex has logarithmically expanded the density of potential markers for fine mapping disease loci. Here we present a complete assessment of the available STRs within a 3.8-Mb genomic segment encompassing the MHC. Of 443 potential STRs identified by computer analysis and tested for variation in a single sample containing pooled DNA from 36 individuals, 249 polymorphic STRs located throughout the complex were identified. The class of repeat (di-, tri-, etc.), precise nucleotide position, position relative to known genes, PCR conditions, and D6S numbers for the 249 polymorphic STRs are provided as a resource for selecting appropriate markers to use in future studies of MHC molecular genetics and disease association.  相似文献   

6.
7.
Survey of plant short tandem DNA repeats   总被引:46,自引:0,他引:46  
Length variations in simple sequence tandem repeats are being given increased attention in plant genetics. Some short tandem repeats (STRs) from a few plant species, mainly those at the dinucleotide level, have been demonstrated to show polymorphisms and Mendelian inheritance. In the study reported here a search for all of the possible STRs ranging from mononucleotide up to tetranucleotide repeats was carried out on EMBL and GenBank DNA sequence databases of 3026 kb nuclear DNA and 1268 kb organelle DNA in 54 and 28 plant species (plus algae), respectively. An extreme rareness of STRs (4 STRs in 1268 kb DNA) was detected in organelle compared with nuclear DNA sequences. In nuclear DNA sequences, (AT)n sequences were the most abundant followed by (A)n · (T)n, (AG)n · (CT)n, (AAT)n · (ATT)n, (AAC)n · (GTT), (AGC)n · (GCT)n, (AAG)n · (CTT)n, (AATT)n · (TTAA)n, (AAAT)n · (ATTT)n and (AC)n · (GT)n sequences. A total of 130 STRs were found, including 49 (AT)n sequences in 31 species, giving an average of 1 STR every 23.3 kb and 1 (AT)n STR every 62 kb. An abundance comparable to that for the dinucleotide repeat was observed for the tri- and tetranucleotide repeats together. On average, there was 1 STR every 64.6 kb DNA in monocotyledons versus 1 every 21.2 kb DNA in dicotyledons. The fraction of STRs that contained G-C basepairs increased as the G+C contents went up from dicotyledons, monocotyledons to algae. While STRs of mono-, di- and tetranucleotide repeats were all located in non coding regions, 57% of the trinucleotide STRs containing G-C basepairs resided in coding regions.  相似文献   

8.
We studied 155 human short tandem repeat (STR) DNA markers in chimpanzees (Pan troglodytes) via the polymerase chain reaction (PCR). There is no difference in number of alleles per locus among STRs of different motif length (di-, tri-, or tetranucleotide repeats). We investigated 42 of the most informative STRs in greater detail using DNA isolated from a panel of 41 African-born, captive-housed chimpanzees. They reveal a wealth of genetic variability in chimpanzees, with an average of six alleles and 70.6% heterozygosity. The average paternity exclusion probability is 51.6%, and the best three STRs jointly provide >95% mean exclusion probability. Used in combination to define a multiple-locus genotype, the five most informative focal STRs can potentially uniquely identify every chimpanzee alive in the world. Although the subjects are of unknown geographical origin, homozygosity tests indicate little evidence for population subdivision. These markers represent the basis of a powerful battery of genetic tests, including individual identification, e.g., in poaching, paternity testing, or reconstruction of pedigrees among captive and wild chimpanzee breeding populations.  相似文献   

9.
Assurance of cell line homogeneity and capability of cell contamination detection are among the most essential steps of cell based research. Due to high discriminatory efficiency, low cost and reliability, analysis of short tandem repeats (STR) has been introduced as a method of choice for human cell line authentication. In the present study 13 Combined DNA Index System (CODIS) based STRs along with the gender determination (Amelogenin) gene were utilized to establish a reproducible approach for the authentication of 100 human cell lines deposited in the National Cell Bank of Iran (NCBI), using the polymerase chain reaction (PCR) method. PCR products were subsequently analyzed by polyacrylamide gel electrophoresis (PAGE) and visualized by silver staining followed by gel documentation and software analysis. STR profiles obtained were compared with those of the American Type Culture Collection (ATCC) and the Japanese Collection of Research Bioresource (JCRB) as STR references. We detected 18.8% cross contamination among the NCBI human cell lines. To our knowledge, this is the first report of authentication of human cell lines using the 13 CODIS core STRs combined with Amelogenin.  相似文献   

10.
Short nucleotide repetitions (STRs) are commonly used as genetic markers; thus their detection and analysis constitutes a very important tool for the mapping of genetic diseases, as well as for gathering information about genetic polymorphisms at the population level. STRs can be detected with agarose- or acrylamide-based electrophoretic techniques, followed by visualization of the DNA sample with ethidium bromide, silver nitrate, or fluorophore labeling. In this work, we analyzed genomic DNA from five individuals affected with type II diabetes mellitus (T2DM) and five controls (unaffected individuals) in order to know the most precise and reproducible technique for the analysis of the existing polymorphism in the STR DG10S478 of the TCF7L2 gene. The combination of PCR with labeling of the products with the CY5 fluorophore, followed by detection on an ALFexpress sequencer, offered the required resolution to detect the variability in this STR, based solely on size analysis. Our methodology offers similar accuracy and reproducibility at lower costs than existing methods based on the sequencing of PCR products, and is a faster alternative when applied to genotyping studies.  相似文献   

11.
In a series of publications beginning in the 1960s, Neel and colleagues suggested that genetically nonrandom, or "lineal", population fissions contributed to genetic structure in ancient human groups. The authors reached this conclusion by studying the genetic consequences of village fissions among the Yanomamo, a Native South American group thought to have been relatively unaffected by European contact and, therefore, representative of the human past. On the basis of ethnographic accounts and pedigree data, they further concluded that patrilineal relationships were particularly important in shaping the genetic structure of villages following fissions. This study reexamines the genetic consequences of village fissions using autosomal STRs, Y-chromosome STRs, and mitochondrial DNA sequences collected from large samples of individuals from multiple Yanomamo villages. Our analyses of the autosomal STRs replicate the previous finding that village fissions have produced substantial genetic structure among the Yanomamo. However, our analyses of Y-chromosome STRs and mtDNA d-loop polymorphisms suggest that other population processes, including village movements, inter-village migration, and polygynous marriage, affect genetic structure in ways not predicted by a simple model of patrilineal fissions. We discuss the broader implications of population fissions for human evolution and the suitability of using the Yanomamo as a model for the human past.  相似文献   

12.
13.
Genetic analysis is a useful tool for assigning biological relationships. Thus, it will improve genetic management of wild animal populations and breeding colonies. Kinship analysis will give new insights into the behavior, sociobiology and genetic management of orangutans. In this study, chromosomal DNA from orangutan (Pongo pygmaeus ssp.) was extracted from excrements. Feces samples were screened for up to nine microsatellite markers from related zoo populations of orangutans (Pongo pygmaeus ssp.) kept at the Zoological Garden Berlin and the Zoological Garden Heidelberg, Germany. Family structures are documented in the "International Studybook of the Orangutan" (Perkins 1995) and the "Europ?isches Erhaltungszucht Programm 1998" (Becker 1998). To examine whether human short tandem repeat loci (STR) are suitable for the reconstruction of kinship in orangutans, nine STRs, commonly used in forensic studies and the amelogenin system, were amplified in a multiplex-PCR approach (AmpFlSTR Profiler Plus). We were able to show that five of the nine human autosomal STRs in question amplified successfully in orangutans. Thus, we could reconstruct kinship structures of the Berlin and Heidelberg populations.  相似文献   

14.
15.
Instability of short tandem repeats (STRs) in DNA during replication is observed in all organisms examined, and is causatively involved in various human diseases. We explore the mechanisms involved in instability by examining length changes occurring during the replication of [(CA)(20)TA](n) and [(CAG)(20)TAG](n), in human cells. We show that the majority of alterations consist of an insertion or deletion of one repeat unit, and base substitutions or length changes involving many repeat units are rare. We also show that length changes of two-tract STRs are biased toward the 3'-end of the repeat tract, in reference to lagging strand synthesis. There are some differences between our observations and previous observations in microbes, e.g. the orientation effect was not observed in this study. The results of this study are discussed in terms of the molecular mechanisms leading to alterations in repeat tracts.  相似文献   

16.
Short tandem repeats (STRs) are subjected to two kinds of mutational modifications: point mutations and replication slippages. The latter is found to be the more frequent cause of STR modifications, but a satisfactory quantitative measure of the ratio of the two processes has yet to be determined. The comparison of entire genome sequences of closely enough related species enables one to obtain sufficient statistics by counting the differences in the STR regions. We analyzed human–chimpanzee DNA sequence alignments to obtain the counts of point mutations and replication slippage modifications. The results were compared with the results of a computer simulation, and the parameters quantifying the replication slippage probability as well as the probabilities of point mutations within the repeats were determined. It was found that within the STRs with repeated units consisting of one, two or three nucleotides, point mutations occur approximately twice as frequently as one would expect on the basis of the 1.2% difference between the human and chimpanzee genomes. As expected, the replication slippage probability is negligible below a 10-bp threshold and grows above this level. The replication slippage events outnumber the point mutations by one or two orders of magnitude, but are still lower by one order of magnitude relative to the mutability of the markers that are used for genotyping purposes.  相似文献   

17.
Oligonucleotides representing 60 trinucleotide (21mers) and four dinucleotide (20mers) tandem repeats were directly synthesized and arrayed onto an aminated polypropylene substrate. DNA samples of different complexities (a CAG-containing 21mer oligonucleotide, PCR fragments of 200 to 3,000 bp, and cosmids with 31 to 35 kb inserts) were radiolabelled and hybridized to the oligonucleotide array at various temperatures. When compared to sequence data available from the test DNAs, the reverse blot system specifically identified various tri- and dinucleotide short tandem repeats (STRs) in every case. Moreover, there was no random or cross hybridization to nonspecific sequences. It was possible to detect as few as three repeated units in a particular location, as shown for (CCT)n, (GCC)n and (CAC)n triplets in cosmid DNA. Varying the hybridization stringency can enhance the detection of STRs. This single-step reverse blot system therefore allows the rapid, specific and sensitive identification of various STRs in DNA sources of different complexity.  相似文献   

18.
Polymers of random 14 mer oligonucleotides are shown to detect discrete loci in the human genome. Eighteen different synthetic tandem repeats of random 14 base-pair units (STRs) have been generated and all of them turn out to detect polymorphic loci on southern blots of human DNA samples, presumably corresponding to a variable number of tandem repeats (VNTR). This finding suggests that minisatellites are a major component of the human genome and are strongly associated with the generation of genetic variability. In addition, it should open new strategies to make new polymorphic probes available.  相似文献   

19.
The excavation of five frozen graves at the Sytygane Syhe and Istekh-Myrane burial sites (dated at 400 years old) in central Yakutia revealed five human skeletons belonging to the Yakut population. To investigate the origin and evolution of the Yakut population as well as the kinship system between individuals buried in these two sites, DNA was extracted from bone samples and analyzed by autosomal short tandem repeats (STRs) and by sequencing hypervariable region I (HV1) of the mitochondrial DNA (mtDNA) control region. The results showed a diversity of sepulchral organizations linked probably to the social or genetic background of the subjects. Comparison of STR profiles, mitochondrial haplotypes, and haplogroups with data from Eurasian populations indicated affinities with Asian populations and suggested a relative specificity and continuity of part of the Yakut mitochondrial gene pool during the last five centuries. Moreover, our results did not support a Central Asian (with the exception of maternal lineage of West Eurasian origin) or Siberian origin of the maternal lineages of these ancient Yakut subjects, implying an ethnogenesis of the Yakut population probably more complex than previously proposed.  相似文献   

20.
二代测序技术的涌现推动了基因组学研究,特别是在疾病相关的遗传变异研究中发挥了重要作用.虽然大多数遗传变异类型都可以借助于各种二代测序分析工具进行检测,但是仍然存在局限性,比如短串联重复序列的长度变异.许多遗传疾病是由短串联重复序列的长度扩张导致的,尤其是亨廷顿病等多种神经系统疾病.然而,现在几乎没有工具能够利用二代测序检测长度大于测序读长的短串联重复序列变异.为了突破这一限制,我们开发了一个全新的方法,该方法基于双末端二代测序辨识短串联重复序列长度变异,并可估计其扩张长度,将其应用于一项基于全外显子组测序的运动神经元疾病临床研究中,成功地鉴定出致病的短串联重复序列长度扩张.该方法首次原创性地利用测序读长覆盖深度特征来解决短串联重复序列变异检测问题,在人类遗传疾病研究中具有广泛的应用价值,并且对于其他二代测序分析方法的开发具有启发性意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号