首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report reviews three categories of precursor cells present within adults. The first category of precursor cell, the epiblast-like stem cell, has the potential of forming cells from all three embryonic germ layer lineages, e.g., ectoderm, mesoderm, and endoderm. The second category of precursor cell, the germ layer lineage stem cell, consists of three separate cells. Each of the three cells is committed to form cells limited to a specific embryonic germ layer lineage. Thus the second category consists of germ layer lineage ectodermal stem cells, germ layer lineage mesodermal stem cells, and germ layer lineage endodermal stem cells. The third category of precursor cells, progenitor cells, contains a multitude of cells. These cells are committed to form specific cell and tissue types and are the immediate precursors to the differentiated cells and tissues of the adult. The three categories of precursor cells can be readily isolated from adult tissues. They can be distinguished from each other based on their size, growth in cell culture, expressed genes, cell surface markers, and potential for differentiation. This report also discusses new findings. These findings include the karyotypic analysis of germ layer lineage stem cells; the appearance of dopaminergic neurons after implantation of naive adult pluripotent stem cells into a 6-hydroxydopamine-lesioned Parkinson's model; and the use of adult stem cells as transport mechanisms for exogenous genetic material. We conclude by discussing the potential roles of adult-derived precursor cells as building blocks for tissue repair and as delivery vehicles for molecular medicine.  相似文献   

2.
Adult reserve stem cells and their potential for tissue engineering   总被引:6,自引:0,他引:6  
Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories, have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher order. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve, precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including, tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50–70 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.  相似文献   

3.
Multiple tissue niches in the human body are now recognised to harbour stem cells. Here, we have asked how different adult stem cell populations, isolated from two ontogenetically distinct human organs (skin, pancreas), actually are with respect to a panel of standard markers/characteristics. Here we show that an easily accessible adult human tissue such as skin may serve as a convenient source of adult stem cell-like populations that share markers with stem cells derived from an internal, exocrine organ. Surprisingly, both, human pancreas- and skin-derived stem/progenitor cells demonstrate differentiation patterns across lineage boundaries into cell types of ectoderm (e.g. PGP 9.5+ and GFAP+), mesoderm (e.g. alpha-SMA+) and entoderm (e.g. amylase+ and albumin+). This intriguing differentiation capability warrants systemic follow-up, since it raises the theoretical possibility that an adult human skin-derived progenitor cell population could be envisioned for possible application in cell replacement therapies.  相似文献   

4.
Three germ cell layers, the ectoderm, mesoderm and endoderm, are established during the gastrulation stage. All cell types in different organs and tissues are derived from these 3 germ cell layers at later stages. For example, skin epithelial cells and neuronal cells are derived from the ectoderm, while endothelial cells and muscle cells from the mesoderm and lung, and intestine epithelial cells from the endoderm. While in a normal situation different germ cells are destined to specific cell fates in differ...  相似文献   

5.
Cell therapy for tissue regeneration requires cells with high self-renewal potential and with the capacity to differentiate into multiple differentiated cell lineages, like embryonic stem cells (ESCs) and adult somatic cells induced to pluripotency (iPSCs) by genetic manipulation. Here we report that normal adult mammalian bone marrow contains cells, with the cell surface antigen CD34, that naturally express genes characteristic of ESCs and required to generate iPSCs. In addition, these CD34+ cells spontaneously express, without genetic manipulation, genes characteristic of the three embryonic germ layers: ectoderm, mesoderm and endoderm. In addition to the neural lineage genes we previously reported in these CD34+ cells, we found that they express genes of the mesodermal cardiac muscle lineage and of the endodermal pancreatic lineage as well as intestinal lineage genes. Thus, these normal cells in the adult spontaneously exhibit characteristics of embryonic-like stem cells.  相似文献   

6.
In the mammal, the pluripotent cells of embryo differentiate and commit to either the mesoderm/endoderm lineages or the ectoderm lineage during gastrulation. In culture, the ability to direct lineage choice from pluripotent cells into the mesoderm/endoderm or ectoderm lineages will enable the development of technologies for the formation of highly enriched or homogenous populations of cells. Here we show that manipulation of cell:cell contact and a mesoderm suppressing activity in culture affects the outcome of pluripotent cell differentiation and when both variables are manipulated appropriately they can direct differentiation to either the mesoderm or ectoderm lineage. The disruption of cell:cell contacts and removal of a mesoderm suppressor activity results in the differentiation of pluripotent, primitive ectoderm-like cells to the mesoderm lineage, while maintenance of cell:cell contacts and inclusion, within the culture medium, of a mesoderm suppressing activity results in the formation of near homogenous populations of ectoderm. Understanding the contribution of these variables in lineage choice provides a framework for the development of directed differentiation protocols that result in the formation of specific cell populations from pluripotent cells in culture.  相似文献   

7.
After completion of gastrulation, typical vertebrate embryos consist of three cell sheets, called germ layers. The outer layer, the ectoderm, which produces the cells of the epidermis and the nervous system; the inner layer, the endoderm, producing the lining of the digestive tube and its associated organs (pancreas, liver, lungs etc.) and the middle layer, the mesoderm, which gives rise to several organs (heart, kidney, gonads), connective tissues (bone, muscles, tendons, blood vessels), and blood cells. The formation of the germ layers is one of the earliest embryonic events to subdivide multicellular embryos into a few compartments. In Xenopus laevis, the spatial domains of three germ layers are largely separated along the animal-vegetal axis even before gastrulation; ectoderm in the animal pole region; mesoderm in the equatorial region and endoderm in the vegetal pole region. In this review, we summarise the recent advances in our understanding of the formation of the germ layers in Xenopus laevis.  相似文献   

8.
9.
10.
Rana pipiens embryos at the end of the blastula stage were dissociated and the cell suspension was separated into presumptive ectoderm, mesoderm, light endoderm, and heavy endoderm cells by a discontinuous density gradient centrifugation technique. The isolated germ layers were analyzed for total lipid, lipid phosphorus, plasmalogen, RNA, and DNA. Per gram dry weight, DNA showed a threefold decrease from ectoderm to heavy endoderm. On the same basis, the RNA content of the mesoderm was 34 per cent higher than that of ectoderm, and 320 and 570 per cent higher than that of light and heavy endoderm, respectively. In addition to the RNA and DNA gradients, there were at least two superimposed lipid gradients: a neutral lipid gradient decreasing from ectoderm to endoderm, and a total phospholipid gradient increasing from ectoderm to endoderm. In contrast to total phospholipid, a specific phospholipid class, ethanolamine plasmalogen, decreased from ectoderm to endoderm. The total lipid content per gram dry weight was the same in all the germ layers. Total phospholipids were analyzed quantitatively by thin layer chromatography. Phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and inositol phospholipid constituted 34, 13, 12, and 34 per cent, respectively, of the total lipid phosphorus. The phospholipid composition was different in each germ layer. The possible role of specific lipids in embryonic induction and differentiation is discussed.  相似文献   

11.
从受精卵发育成具有不同细胞类型个体的过程中,细胞命运受到多个层次的调控。在哺乳动物的早期胚胎发育过程中,原肠运动是外、中、内三个胚层的建立过程,为后续的器官发生和形态建成提供了发育蓝图。然而目前对于三胚层命运建立的分子机制认识并不清晰。该文通过对小鼠早期胚胎的时空转录组分析,从分子层面揭示了外、中、内三胚层谱系发生的整个过程。  相似文献   

12.
Fibroblast growth factor (FGF)-dependent epithelial-mesenchymal transitions and cell migration contribute to the establishment of germ layers in vertebrates and other animals, but a comprehensive demonstration of the cellular activities that FGF controls to mediate these events has not been provided for any system. The establishment of the Drosophila mesoderm layer from an epithelial primordium involves a transition to a mesenchymal state and the dispersal of cells away from the site of internalisation in a FGF-dependent fashion. We show here that FGF plays multiple roles at successive stages of mesoderm morphogenesis in Drosophila. It is first required for the mesoderm primordium to lose its epithelial polarity. An intimate, FGF-dependent contact is established and maintained between the germ layers through mesoderm cell protrusions. These protrusions extend deep into the underlying ectoderm epithelium and are associated with high levels of E-cadherin at the germ layer interface. Finally, FGF directs distinct hitherto unrecognised and partially redundant protrusive behaviours during later mesoderm spreading. Cells first move radially towards the ectoderm, and then switch to a dorsally directed movement across its surface. We show that both movements are important for layer formation and present evidence suggesting that they are controlled by genetically distinct mechanisms.  相似文献   

13.
14.
Experimental studies and field surveys suggest that embryonic loss during the first 6 weeks of gestation is a common occurrence in the mare. During the first 2 weeks of development, a number of important cell differentiation events must occur to yield a viable embryo proper containing all three major germ layers (ectoderm, mesoderm, and endoderm). Because formation of the mesoderm and primitive streak are critical to the development of the embryo proper, but have not been described extensively in the horse, we examined tissue development and differentiation in early horse conceptuses using a combination of stereomicroscopy, light microscopy, and immunohistochemistry. Ingression of epiblast cells to form the mesoderm was first observed on day 12 after ovulation; by Day 18 the conceptus had completed a series of differentiation events and morphologic changes that yielded an embryo proper with a functional circulation. While mesoderm precursor cells were present from Day 12 after ovulation, vimentin expression was not detectable until Day 14, suggesting that initial differentiation of mesoderm from the epiblast in the horse is independent of this intermediate filament protein, a situation that contrasts with other domestic species. Development of the other major embryonic germ layers was similar to other species. For example, ectodermal cells expressed cytokeratins, and there was a clear demarcation in staining intensity between embryonic ectoderm and trophectoderm. Hypoblast showed clear α1-fetoprotein expression from as early as Day 10 after ovulation, and seemed to be the only source of α1-fetoprotein in the early conceptus.  相似文献   

15.
通过人胚胎干细胞(human embryonic stem cells,hESC)体外分化方法和畸胎瘤形成可以分化获得多种成体细胞.但目前尚不清楚是否可以从hESCs畸胎瘤中分离某些特异性细胞.通过体外筛选方法,有效地从hESCs畸胎瘤中分离出神经前体细胞(neural progenitor cells,NPCs)和间充质干细胞(mesenchymal stem cells,MSCs).这种hESCs畸胎瘤来源的NPCs和MSCs与体内神经前体细胞和间充质干细胞有着相似的分子标记和特性,并具有进一步的分化潜能——分别可以诱导成为神经元、神经胶质细胞、脂肪细胞和骨骼细胞等.根据人胚胎干细胞畸胎瘤中含有不同分化阶段的外胚层、中胚层和内胚层的组织或细胞,认为人胚胎干细胞畸胎瘤可以作为另一个细胞来源以获取多种(包括人胚胎干细胞体外分化难以得到的)各种前体/干细胞和终末分化细胞.  相似文献   

16.
Migration-Directing Liquid Properties of Embryonic Amphibian Tissues   总被引:1,自引:0,他引:1  
Deep ectoderm, mesoderm and endoderm excised from gastrulatingamphibian embryos spontaneously undergo liquid-like movementsin organ culture. Cell populations of these tissues on nonadhesivesubstrata will round up into spheres, spread over one anotherand segregate (sort out) from one another just as immiscibleliquid droplets do. In ordinary liquids, movements like theseare controlled by surface tensions; perhaps surface tensionsalso control the similar movements of liquid-like tissues. Onenecessary condition for tissue surface tension analysis is thatthe tissue must be able (just as ordinary liquids are able)to spontaneously relax internal stretching forces (shear stresses).When cellular aggregates of the germ layers were deformed bygentle compression between parallel glass plates, cells withinthe aggregates were initially stretched. However, the cellssoon returned to their original undistorted shapes. Thus, cellstretching forces were gradually relaxed by cell rearrangements.The in vitro spreading movements of the deep germ layers implythat the surface tension of ectoderm should be greater thanthe surface tension of mesoderm which should be greater thanthe surface tension of endoderm. Quantitative measurements oftissue surface tensions made by parallel plate compression confirmprecisely that relationship. Furthermore, the surface tensionsof these tissues remain constant regardless of the amount ofaggregate flattening—another necessary condition for validsurface tension measurements. These results demonstrate thatamphibian deep germ layers possess fundamental liquid propertieswhich are sufficient to direct their liquid-like rearrangementsin organ culture. Furthermore, I also report that one of theseproperties, surface tension, displays a preliminary correlationwith density of cell surface charge (assessed by electrophoreticmobility) and with the onset of in vivo mesodermal involution.  相似文献   

17.
In arthropods, annelids and chordates, segmentation of the body axis encompasses both ectodermal and mesodermal derivatives. In vertebrates, trunk mesoderm segments autonomously and induces segmental arrangement of the ectoderm-derived nervous system. In contrast, in the arthropod Drosophila melanogaster, the ectoderm segments autonomously and mesoderm segmentation is at least partially dependent on the ectoderm. While segmentation has been proposed to be a feature of the common ancestor of vertebrates and arthropods, considering vertebrates and Drosophila alone, it is impossible to conclude whether the ancestral primary segmented tissue was the ectoderm or the mesoderm. Furthermore, much of Drosophila segmentation occurs before gastrulation and thus may not accurately represent the mechanisms of segmentation in all arthropods. To better understand the relationship between segmented germ layers in arthropods, we asked whether segmentation is an intrinsic property of the ectoderm and/or the mesoderm in the crustacean Parhyale hawaiensis by ablating either the ectoderm or the mesoderm and then assaying for segmentation in the remaining tissue layer. We found that the ectoderm segments autonomously. However, mesoderm segmentation requires at least a permissive signal from the ectoderm. Although mesodermal stem cells undergo normal rounds of division in the absence of ectoderm, they do not migrate properly in respect to migration direction and distance. In addition, their progeny neither divide nor express the mesoderm segmentation markers Ph-twist and Ph-Even-skipped. As segmentation is ectoderm-dependent in both Parhyale and holometabola insects, we hypothesize that segmentation is primarily a property of the ectoderm in pancrustacea.  相似文献   

18.
19.
The experiments described in this paper were designed to compare the normal fates of animal pole blastomeres of Xenopus laevis with their state of commitment. Single animal pole blastomeres were labeled with a lineage marker and transplanted into the blastocoels of host embryos of different stages. The distribution of labeled daughter cells in the tadpole reflects the state of commitment of the parent cell at the time of transplantation. It is known that cells from the animal pole of the early blastula normally contribute predominantly to ectoderm with a small, but significant, contribution to the mesoderm. We show that on transplantation to the blastocoels of late blastula host embryos these blastomeres are pluripotent, contributing to all three germ layers. At later stages the normal fate of these cells becomes restricted solely to ectoderm and concomitantly the proportion of pluripotent cells is reduced, although the results depend upon the stage of the host embryo. Blastomeres from late blastula donors transplanted to mid gastrulae contribute solely to ectoderm in 34% of cases; however, in earlier hosts, when the vegetal hemisphere cells have "mesoderm inducing" or "vegetalizing" activity, late blastula animal pole blastomeres contribute to mesoderm and endoderm rather than ectoderm. Thus during the blastula stage animal pole cells pass from pluripotency to a labile state of commitment to ectoderm.  相似文献   

20.
G Tremml  M Bienz 《The EMBO journal》1989,8(9):2677-2685
The visceral mesoderm adhering to the midgut constitutes an internal germ layer of the Drosophila embryo that stretches along most of the anteroposterior axis (parasegment 2-13). Most cells of the midgut visceral mesoderm express exclusively one of five homeotic genes. Three of these genes, Antennapedia, Ultrabithorax and abdominal-A are active in parasegmental domains characteristic for this germ layer as they are nonoverlapping and adjacent. The common boundaries between these domains depend on mutual regulatory interactions between the three genes. The same genes function to control gut morphogenesis. Two further homeotic genes Sex combs reduced and Abdominal-B are expressed at both ends of the midgut visceral mesoderm, although absence of their expression does not appear to affect gut morphogenesis. There are no regulatory interactions between these two and the other homeotic genes. As a rule, the anterior limit of each homeotic gene domain in the visceral mesoderm is shifted posteriorly by one parasegment compared to the ectoderm. The domains result from a set of regulatory processes that are distinct from the ones ruling in other germ layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号