首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Live-cell imaging methods were used to study microtubule dynamics in the apical regions of leading hyphae and germ tubes of Neurospora crassa expressing beta-tubulin-GFP. Microtubule polymerization rates in hyphae of N. crassa were much faster than those previously reported in any other eukaryotic organism. In order to address the roles of motor proteins in microtubule dynamic instability in N. crassa, the microtubule-motor mutant strains, Deltankin and ro-1, were examined. Polymerization and depolymerization rates in leading hyphae of these strains were reduced by one half relative to the wild type. Furthermore, microtubules in germ tubes of wild type and microtubule-motor mutants exhibited similar dynamic characteristics as those in hyphae of mutant strains. Small microtubule fragments exhibiting anterograde and retrograde motility were present in leading hyphae of all strains and germ tubes of wild-type strains. Our data suggest that microtubule motors play important roles in regulating microtubule dynamic instability in leading hyphae but not in germ tubes.  相似文献   

2.
Induction of multiple germ tubes in Neurospora crassa by antitubulin agents   总被引:2,自引:0,他引:2  
The antitubulin fungicide benomyl suppressed the linear growth of Neurospora crassa wild type strain St. Lawrence 74 at micromolar concentrations. The rate of germination of macroconidia was not affected. Macroconidia exposed to 1.7 microM benomyl for 5 h formed multiple germ tubes. When germlings incubated for 4 h were exposed to 1.7 microM benomyl for 3 h, their germ tube stopped growing, swelled and emitted several branches. Normal linear growth was restored after removal of the fungicide. Linear growth of N. crassa was resistant up to 16 microM nocodazole. This drug induced multipolar germination at 8 microM, and griseofulvin only at 140 microM. The microtubule (MT) cytoskeleton of N. crassa could be revealed by indirect immunofluorescence with the monoclonal antibody YOL 1/34 directed against yeast alpha-tubulin. We detected no striking effects of the benomyl treatments on MT organization. The MT-stabilizing agents deuterium oxide (D2O) and cAMP have no antagonistic effects on the benomyl-induced multipolar germination. The positioning of nuclei and mitochondria was determined from the DAPI and Rhodamine 123 fluorescence patterns, respectively. Benomyl inhibited nuclear migration into multiple germ tubes. Quantitative scanning cytophotometry revealed a peak in the intensity of the mitochondria-associated Rhodamine 123 fluorescence near the apex of untreated germlings. This peak disappeared in multiple germ tubes. Benomyl-resistant mutant bml 511 (r), mutated in its beta-tubulin gene, germinated normally in the presence of the fungicide. This strongly suggests that multiple germ tube formation was due to the effect of benomyl on beta-tubulin. Benomyl-resistant strain 74-3, constructed by reintroducing the cloned mutant N. crassa beta-tubulin gene into the cells by transformation, displayed a partial resistance to benomyl with respect to multipolar germination. Its rate of germination was slow (50% germination reached after 4 h at 37 degrees C as compared to 2.5 h for the wild type). In contrast to N. crassa, the other ascomycete Aspergillus nidulans is nocodazole-sensitive (linear growth suppressed at 1.6 microM). It did not respond to the MT inhibitors benomyl and nocodazole with respect to the pattern of germ tube emergence. Our results suggest that microtubule or membrane beta-tubulin is involved in the maintenance of developmental polarity during germ tube emergence and growth of N. crassa.  相似文献   

3.
Non-dimorphic variants of Candida albicans, which were unable to form germ tubes or mature hyphae in media containing amino acids, glucose and salts or N-acetylglucosamine or serum, were prepared from two hyphal positive laboratory strains using a physical separation method. The hyphal-minus phenotype was stable and may be due to mutations or phenotypic variation. The variant strains maintained their internal pH within narrower bounds as compared to their parental wild-types. When exposed to conditions that normally supported the induction of germ tubes the cytoplasmic pH of the wild type strains increased from 6.8 to over pH 8.0 within 5 min while in the variants the rise in internal pH was only about 0.3 pH units. The wild type strains acidified the growth medium more rapidly than the variants. The results suggest that the control of internal pH is directly or indirectly associated with the regulation of dimorphism. The variants had unaltered cell volumes and specific growth rates. The hyphal-minus phenotype was however fully reversible since revertants occurred spontaneously on serum containing agar.  相似文献   

4.
5.
The multinucleate hyphae of the filamentous ascomycete fungus Neurospora crassa grow by polarized hyphal tip extension. Both the actin and microtubule cytoskeleton are required for maximum hyphal extension, in addition to other vital processes. Previously, we have shown that the monomeric GTPase encoded by the N. crassa rho-4 locus is required for actin ring formation during the process of septation; rho-4 mutants lack septa. However, other phenotypic aspects of the rho-4 mutant, such as slow growth and cytoplasmic bleeding, led us to examine the hypothesis that the microtubule (MT) cytoskeleton of the rho-4 mutant was affected in morphology and dynamics. Unlike a wild-type strain, the rho-4 mutant had few MTs and these few MTs originated from nuclear spindle pole bodies. rho-4 mutants and rho-4 strains containing a GTP-locked (activated) rho-4 allele showed a reduction in numbers of cytoplasmic MTs and microtubule stabilization at hyphal tips. Strains containing a GDP-biased (negative) allele of rho-4 showed normal numbers of MTs and minor effects on microtubule stabilization. An examination of nuclear dynamics revealed that rho-4 mutants have large, and often, stretched or broken nuclei. These observations indicate that RHO-4 plays important roles in regulating both the actin and MT cytoskeleton, which are essential for optimal hyphal tip growth and in nuclear distribution and morphology.  相似文献   

6.
Cell biology of conidial anastomosis tubes in Neurospora crassa   总被引:1,自引:0,他引:1       下载免费PDF全文
Although hyphal fusion has been well documented in mature colonies of filamentous fungi, it has been little studied during colony establishment. Here we show that specialized hyphae, called conidial anastomosis tubes (CATs), are produced by all types of conidia and by conidial germ tubes of Neurospora crassa. The CAT is shown to be a cellular element that is morphologically and physiologically distinct from a germ tube and under separate genetic control. In contrast to germ tubes, CATs are thinner, shorter, lack branches, exhibit determinate growth, and home toward each other. Evidence for an extracellular CAT inducer derived from conidia was obtained because CAT formation was reduced at low conidial concentrations. A cr-1 mutant lacking cyclic AMP (cAMP) produced CATs, indicating that the inducer is not cAMP. Evidence that the transduction of the CAT inducer signal involves a putative transmembrane protein (HAM-2) and the MAK-2 and NRC-1 proteins of a mitogen-activated protein kinase signaling pathway was obtained because ham-2, mak-2, and nrc-1 mutants lacked CATs. Optical tweezers were used in a novel experimental assay to micromanipulate whole conidia and germlings to analyze chemoattraction between CATs during homing. Strains of the same and opposite mating type were shown to home toward each other. The cr-1 mutant also underwent normal homing, indicating that cAMP is not the chemoattractant. ham-2, mak-2, and nrc-1 macroconidia did not attract CATs of the wild type. Fusion between CATs of opposite mating types was partially inhibited, providing evidence of non-self-recognition prior to fusion. Microtubules and nuclei passed through fused CATs.  相似文献   

7.
We have used light and electron microscopy to document the cytoplasmic effects of the ropy (ro-1) mutation in mature hyphae of Neurospora crassa and to better understand the role(s) of dynein during hyphal tip growth. Based on video-enhanced DIC light microscopy, the mature, growing hyphae of N. crassa wild type could be divided into four regions according to cytoplasmic organization and behavior: the apical region (I) and three subapical regions (II, III, and IV). A well-defined Spitzenk?rper dominated the cytoplasm of region I. In region II, vesicles ( approximately 0.48 micro m diameter) and mitochondria maintained primarily a constant location within the advancing cytoplasm. This region was typically void of nuclei. Vesicles exhibited anterograde and retrograde motility in regions III and IV and followed generally parallel paths along the longitudinal axis of the cell. A small population of mitochondria displayed rapid anterograde and retrograde movements, while most maintained a constant position in the advancing cytoplasm in regions III and IV. Many nuclei occupied the cytoplasm of regions III and IV. In ro-1 hyphae, discrete cytoplasmic regions were not recognized and the motility and/or positioning of vesicles, mitochondria, and nuclei were altered to varying degrees, relative to the wild type cells. Immunofluorescence microscopy revealed that the microtubule cytoskeleton was severely disrupted in ro-1 cells. Transmission electron microscopy of cryofixed cells confirmed that region I of wild-type hyphae contained a Spitzenk?rper composed of an aggregation of small apical vesicles that surrounded entirely or partially a central core composed, in part, of microvesicles embedded in a dense granular to fibrillar matrix. The apex of ro-1 the hypha contained a Spitzenk?rper with reduced numbers of apical vesicles but maintained a defined central core. Clearly, dynein deficiency in the mutant caused profound perturbation in microtubule organization and function and, consequently, organelle dynamics and positioning. These perturbations impact negatively on the organization and stability of the Spitzenk?rper, which, in turn, led to severe reduction in growth rate and altered hyphal morphology.  相似文献   

8.
A mutant of strain 69–1113a of Neurospora crassa, which shows periodic growth upon both complete and minimal media, was named “clock,” and some of the morphological and genetic differences between this mutant and the “patch” and “wild” strains were investigated. In contrast to the uniform growth of “wild,” the “clock” mutant produces a series of bands formed by cymelike aggregations of hyphae which become progressively more dense and finally mark the end (front) of a growth band. A new growth band is formed by a number of hyphae which grow out as in “wild” strains and dichotomize and form new cymes which again become progressively more dense and finally form a new front. It is shown that “clock” continues its rhythmic growth when cultured in continuous darkness. Some “wild” strains were induced to grow periodically on appropriate media. A medium containing equal quantities of sorbose and sucrose caused strain 65–811A (a “wild”) to produce the “patch” type growth. Random isolation, as well as ordered isolation, of ascospores following a cross between “wild” and “clock” show a 1: 1 segregation indicating that “clock” differs from “wild” by a single gene.  相似文献   

9.
A barrage is a line or zone of demarcation that may develop at the interface where genetically different fungi meet. Barrage formation represents a type of nonself recognition that has often been attributed to the heterokaryon incompatibility system, which limits the co-occurrence of genetically different nuclei in the same cytoplasm during the asexual phase of the life cycle. While the genetic basis of the heterokaryon incompatibility system is well characterized in Neurospora crassa, barrage formation has not been thoroughly investigated. In addition to the previously described Standard Mating Reaction barrage, we identified at least three types of barrage in N. crassa; dark line, clear zone, and raised aggregate of hyphae. Barrage formation in N. crassa was evident only when paired mycelia were genetically different and only when confrontations were carried out on low nutrient growth media. Barrages were observed to occur in some cases between strains that were identical at all major heterokaryon incompatibility (het) loci and the mating-type locus, mat, which acts as a heterokaryon incompatibility locus during the vegetative phase of N. crassa. We also found examples where barrages did not form between strains that had genetic differences at het-6, het-c, and/or mat. Taken together, these results suggest that the genetic control of barrage formation in N. crassa can operate independently from that of heterokaryon incompatibility and mating type. Surprisingly, barrages were not observed to form when wild-collected strains of N. crassa were paired. However, an increase in the frequency of pairings that produced barrages was observed among strains obtained by back-crossing wild strains to laboratory strains, or through successive rounds of inbreeding of wild-derived strains, suggesting the presence in wild strains of genes that suppress barrage.  相似文献   

10.
We have identified a new gene encoding the G protein alpha subunit, gna-3, from the filamentous fungus Neurospora crassa. The predicted amino acid sequence of GNA-3 is most similar to the Galpha proteins MOD-D, MAGA, and CPG-2 from the saprophytic fungus Podospora anserina and the pathogenic fungi Magnaporthe grisea and Cryphonectria parasitica, respectively. Deletion of gna-3 leads to shorter aerial hyphae and premature, dense conidiation during growth on solid medium or in standing liquid cultures and to inappropriate conidiation in submerged culture. The conidiation and aerial hypha defects of the Deltagna-3 strain are similar to those of a previously characterized adenylyl cyclase mutant, cr-1. Supplementation with cyclic AMP (cAMP) restores wild-type morphology to Deltagna-3 strains in standing liquid cultures. Solid medium augmented with exogenous cAMP suppresses the premature conidiation defect, but aerial hypha formation is still reduced. Submerged-culture conidiation is refractory to cAMP but is suppressed by peptone. In addition, Deltagna-3 submerged cultures express the glucose-repressible gene, qa-2, to levels greatly exceeding those observed in the wild type under carbon-starved conditions. Deltagna-3 strains exhibit reduced fertility in homozygous crosses during the sexual cycle; exogenous cAMP has no effect on this phenotype. Intracellular steady-state cAMP levels of Deltagna-3 strains are decreased 90% relative to the wild type under a variety of growth conditions. Reduced intracellular cAMP levels in the Deltagna-3 strain correlate with lower adenylyl cyclase activity and protein levels. These results demonstrate that GNA-3 modulates conidiation and adenylyl cyclase levels in N. crassa.  相似文献   

11.
To defend themselves against fungal pathogens, plants produce numerous antifungal proteins and peptides, including defensins, some of which have been proposed to interact with fungal cell surface glycosphingolipid components. Although not known as a phytopathogen, the filamentous fungus Neurospora crassa possesses numerous genes similar to those required for plant pathogenesis identified in fungal pathogens (Galagan, J. E., et al. 2003. Nature 422: 859-868), and it has been used as a model for studying plant-phytopathogen interactions targeting fungal membrane components (Thevissen, K., et al. 2003. Peptides. 24: 1705-1712). For this study, neutral glycolipid components were extracted from wild-type and plant defensin-resistant mutant strains of N. crassa. The structures of purified components were elucidated by NMR spectroscopy and mass spectrometry. Neutral glycosphingolipids of both wild-type and mutant strains were characterized as beta-glucopyranosylceramides, but those of the mutants were found with structurally altered ceramides. Although the wild type expressed a preponderance of N-2'-hydroxy-(E)-Delta3-octadecenoate as the fatty-N-acyl component attached to the long-chain base (4E,8E)-9-methyl-4,8-sphingadienine, the mutant ceramides were found with mainly N-2'-hydroxyhexadecanoate instead. In addition, the mutant strains expressed highly increased levels of a sterol glucoside identified as ergosterol-beta-glucoside. The potential implications of these findings with respect to defensin resistance in the N. crassa mutants are discussed.  相似文献   

12.
Extracts of Aspergillus nidulans wild type (bi-1) and the nitrate reductase mutant niaD-17 were active in the in vitro restoration of NADPH-dependent nitrate reductase when mixed with extracts of Neurospora crassa, nit-1. Among the A. nidulans cnx nitrate reductase mutants tested, only the molybdenum repair mutant, cnxE-14 grown in the presence of 10-minus 3 M Na2 MoO4 was active in the restoration assay. Aspergillus extracts contained an inhibitor(s) which was measured by the decrease in NADPH-dependent nitrate reductase formed when extracts of Rhodospirillum rubrum and N. crassa, nit-1 were incubated at room temperature. The inhibition by extracts of A. nidulans, bi-1, cnxE-14, cnxG-4 and cnxH-3 was a linear function of time and a logarithmic function of the protein concentration in the extract. The molybdenum content of N. crassa wild type and nit-1 mycelia were found to be similar, containing approx. 10 mu g molybdenum/mg dry mycelium. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The enzyme purified from wild-type N. crassa contained more than 1 mol of molybdenum per mol of enzyme, whereas the enzyme purified from nit-1 contained negligible amounts of molybdenum.  相似文献   

13.
Three non-identical Zn-resistant strains of Neurospora crassa have been isolated. ZNR-1 and ZNR-2 strains were obtained after repeated subculturing of wild type N. crassa on Zn-containing agar media (8mM and 16mM), while ZNR-3 was isolated after mutagenesis with diethyl sulfate, followed by selection on Zn agar plates (16mM). All three ZNR strains showed two- to threefold resistance to Zn in liquid media when compared with the wild type. However, growth measured by hyphal elongation clearly distinguished between the resistant strains (ZNR-3>ZNR-2>ZNR-1wild). The ZNR-2 and ZNR-3 strains were also cross-resistant to Co, while ZNR-2 alone was cross-resistant to Cu. Both Mg and Fe reversed the growth inhibition caused by Zn; Mg by suppression of Zn uptake and Fe without affecting the same. Assay of catalase, iron-binding siderophores and glutathione in Zn toxicity revealed significant increases in catalase and glutathione levels in the ZNR-2 strain when compared with the wild type. Kinetics of Zn uptake by preformed mycelia showed a rapid initial phase of uptake followed by a slower phase. The rates of Zn uptake measured after leaching surface-bound metal with EDTA revealed that ZNR strains have significantly reduced Zn uptake rates when compared with the wild type. The overall data suggest a partial transport block for Zn uptake as the major mechanism for resistance in ZNR strains. Genetic analysis of ZNR strains showed that in the ZNR-3 strain the znr locus maps close to the mating type locus (mt) of N. crassa LG I, while that of ZNR-1 and ZNR-2 is linked to LG IV associated with chromosomal aberration.  相似文献   

14.
Conidiation is an asexual sporulation pathway that is a response to adverse conditions and is the main mode of dispersal utilized by filamentous fungal pathogens for reestablishment in a more favorable environment. Heterotrimeric G proteins (consisting of α, β, and γ subunits) have been shown to regulate conidiation in diverse fungi. Previous work has demonstrated that all three of the Gα subunits in the filamentous fungus Neurospora crassa affect the accumulation of mass on poor carbon sources and that loss of gna-3 leads to the most dramatic effects on conidiation. In this study, we used (1)H nuclear magnetic resonance (NMR) to profile the metabolome of N. crassa in extracts isolated from vegetative hyphae and conidia from cultures grown under conditions of high or low sucrose. We compared wild-type and Δgna-3 strains to determine whether lack of gna-3 causes a significant difference in the global metabolite profile. The results demonstrate that the global metabolome of wild-type hyphae is influenced by carbon availability. The metabolome of the Δgna-3 strain cultured on both high and low sucrose is similar to that of the wild type grown on high sucrose, suggesting an overall defect in nutrient sensing in the mutant. However, analysis of individual metabolites revealed differences in wild-type and Δgna-3 strains cultured under conditions of low and high sucrose.  相似文献   

15.
The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins.  相似文献   

16.
Septin function in Candida albicans morphogenesis   总被引:6,自引:0,他引:6       下载免费PDF全文
The septin proteins function in the formation of septa, mating projections, and spores in Saccharomyces cerevisiae, as well as in cell division and other processes in animal cells. Candida albicans septins were examined in this study for their roles in morphogenesis of this multimorphic, opportunistically pathogenic fungus, which can range from round budding yeast to elongated hyphae. C. albicans green fluorescent protein labeled septin proteins localized to a tight ring at the bud and pseudohyphae necks and as a more diffuse array in emerging germ tubes of hyphae. Deletion analysis demonstrated that the C. albicans homologs of the S. cerevisiae CDC3 and CDC12 septins are essential for viability. In contrast, the C. albicans cdc10Delta and cdc11Delta mutants were viable but displayed conditional defects in cytokinesis, localization of cell wall chitin, and bud morphology. The mutant phenotypes were not identical, however, indicating that these septins carry out distinct functions. The viable septin mutants could be stimulated to undergo hyphal morphogenesis but formed hyphae with abnormal curvature, and they differed from wild type in the selection of sites for subsequent rounds of hyphal formation. The cdc11Delta mutants were also defective for invasive growth when embedded in agar. These results further extend the known roles of the septins by demonstrating that they are essential for the proper morphogenesis of C. albicans during both budding and filamentous growth.  相似文献   

17.
In nutrient medium containing 3.22 M ethylene glycol or glycerol, conidia of Neurospora crassa grow as single cells, without forming the germ tubes characteristic of normal morphological germination. Ethylene glycol is more effective than glycerol in producing this response. After growth in ethylene glycol medium for a suitable time, the cells are easily disrupted by an abrupt decrease in osmotic pressure. Osmotic disruption yields intact nuclei and mitochondria, although mitochondrial fractions obtained in this way show significantly reduced concentrations of cytochromes c + c(1), as compared to those observed for comparable fractions obtained from vegetative hyphae. Cell cultures gradually adapted to lower concentrations of the glycol show a much higher degree of synchrony in the formation of germ tubes than do untreated conidia.  相似文献   

18.
Polyphosphate (polyP) is the form in which phosphorus (P) is transferred from extraradical hyphae into arbuscles in the symbiotic stage of arbuscular mycorrhizal fungi. However, polyP dynamics in the presymbiotic stage are less understood. In this study, we aimed to investigate polyP accumulation in Gigaspora margarita as influenced by nitrogen (N) and/or P supply during germination. Spores of G. margarita were incubated on medium with or without P or N addition. PolyP content in the fungal tissue was monitored using a polyP kinase/luciferase system, and polyP synthetic activity was determined with 32P labeling. The results showed that both N and P were necessary for polyP accumulation in germ tubes. Nitrate increased the polyP content in germ tubes, but ammonium did not. Along with germination, polyP content decreased in spores, but increased in germ tubes. 32P labeling indicated that polyP synthetic activity increased in germ tubes along with germination, but was negligible in spores. Our results suggest that, in the presymbiotic stage of G. margarita, uptake of environmental N and P increases polyP content in germ tubes, and that polyP synthesis occurs mainly therein, leading to polyP accumulation. The possible mechanism of transfer of polyP from spores to hyphae remains to be elucidated.  相似文献   

19.
The osmotic phenotype of Neurospora crassa is characterized by inhibition of growth at high osmolalities of growth medium. Mutations at six osmotic loci of linkage group I were examined to assess the biochemical and physiological effects of these mutants. Isolated cell walls from 23 osmotic strains were compared with the wild type with regard to quantitative levels of the following components: percentage of total dry weight, total glucose, alkali-soluble glucose, nonglucose carbohydrates, amino acids, glucosamine, galactosamine, and a compound tentatively identified as quinovosamine. The last component has not previously been observed in N. crassa cell walls. Although the cell wall dry weight content of osmotic mutants was not altered, walls isolated from all of the osmotic strains had less alkali-insoluble glucose than those from the wild type. In addition, all of the loci except cut exhibited other consistent differences from the wild type. The os-1, os-3, and os-5 mutants had low levels of alkali-soluble glucose. The os-3 and os-5 mutants had high levels of nonglucose carbohydrates, and flm-2 had a low level of nonglucose carbohydrates. The os-4 mutants had low levels of galactosamine and amino acids and high levels alkali-soluble glucose. An os-1 mutant, B135, produced less of the whole alkali-soluble fraction of the cell wall.  相似文献   

20.
Tubercidin-resistant mutant strains of Neurospora crassa were isolated, and at least one appeared to be deficient in adenosine kinase. No significant differences in [8-14C]adenosine labeling of purine nucleotides or nucleosides were found between the wild type and the adenosine kinase-deficient strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号