首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor on mouse peritoneal macrophages that mediates the uptake of canine beta-very low density lipoproteins (beta-VLDL) has been identified in this study as an unusual apolipoprotein (apo-) B,E(LDL) receptor. Ligand blots of Triton X-100 extracts of mouse peritoneal macrophages using 125I-beta-VLDL identified a single protein. This protein cross-reacted with antibodies against bovine apo-B,E(LDL) receptors, but its apparent Mr was approximately 5,000 less than that of the human apo-B,E(LDL) receptor. Binding studies at 4 degrees C demonstrated specific and saturable binding of low density lipoproteins (LDL), beta-VLDL, and cholesterol-induced high density lipoproteins in plasma that contain apo-E as their only protein constituent (apo-E HDLc) to mouse macrophages. Apolipoprotein E-containing lipoproteins (beta-VLDL and apo-E HDLc) bound to mouse macrophages and human fibroblasts with the same high affinity. However, LDL bound to mouse macrophages with an 18-fold lower affinity than to human fibroblasts. Mouse fibroblasts also bound LDL with a similar low affinity. Compared with the apo-B,E(LDL) receptors on human fibroblasts, the apo-B,E(LDL) receptors on mouse macrophages were resistant to down-regulation by incubation of the cells with LDL or beta-VLDL. There are three lines of evidence that an unusual apo-B,E(LDL) receptor on mouse peritoneal macrophages mediates the binding and uptake of beta-VLDL: LDL with residual apo-E removed displaced completely the 125I-beta-VLDL binding to mouse macrophages, preincubation of the mouse macrophages with apo-B,E(LDL) receptor antibody inhibited both the binding of beta-VLDL and LDL to the cells and the formation of beta-VLDL- and LDL-induced cholesteryl esters, and binding of 125I-beta-VLDL to the cells after down-regulation correlated directly with the amount of mouse macrophage apo-B,E(LDL) receptor as determined on immunoblots. This unusual receptor binds LDL poorly, but binds apo-E-containing lipoproteins with normal very high affinity and is resistant to down-regulation by extracellular cholesterol.  相似文献   

2.
beta very low density lipoproteins (beta-VLDL) interact with mouse peritoneal macrophages via specific receptors leading to pronounced stimulation of cholesterol esterification. The present study has defined an alternative pathway for the processing of beta-VLDL in alveolar macrophages from Watanabe heritable hyperlipidemic (WHHL) rabbits. Macrophages from either New Zealand (NZ) or WHHL rabbits degraded 125I-beta-VLDL to an equivalent extent. Degradation was competed to a similar extent in both cell types by either excess unlabeled beta-VLDL or low density lipoprotein, indicative of a specific receptor involvement. Accumulation of intracellular degradation products of beta-VLDL labeled with the residualizing label, dilactitol-125I-tyramine, was similar in both cell types demonstrating that degradation was not due to secreted proteolytic enzymes. beta-VLDL promoted the incorporation of [3H]oleate into cholesteryl-[3H]oleate and increased the cellular mass of cholesterol in NZ macrophages. In contrast, beta-VLDL did not augment cholesteryl-[3H]oleate deposition in WHHL macrophages. This lack of cholesterol esterification occurred despite equivalent acyl-CoA:cholesterol acyltransferase activity in microsomal fractions of both cell types, and similar augmentations in cholesteryl-[3H]oleate during incubation with phospholipase C-treated LDL. Incubation of WHHL macrophages with beta-VLDL increased cellular cholesterol mass, although the response was attenuated compared to NZ cells. To determine whether these disparities in cholesterol esterification were related to the catabolic fate of beta-VLDL-derived cholesterol esters, [3H]cholesteryl oleate was exchanged into the core of beta-VLDL and incubated with macrophages in medium containing [14C]oleate. NZ macrophages accumulated both [3H]cholesterol and [3H]cholesteryl-[14C]oleate after 5 h, indicating hydrolysis and re-esterification of cholesterol esters. In contrast, WHHL macrophages only accumulated [3H]cholesterol esters, suggesting uptake of cholesterol esters without subsequent hydrolysis. These data demonstrate that WHHL macrophages possess a pathway for the intracellular processing of beta-VLDL that permits internalization of the particle without stimulation of cholesterol esterification.  相似文献   

3.
The plasma clearance and tissue distribution of radioiodinated low-density lipoprotein (LDL), beta-very low density lipoprotein (beta-VLDL), and acetoacetylated LDL were studied in cholesterol-fed rabbits. Radioiodinated LDL ([125I]LDL) was cleared more slowly than either [125I]beta-VLDL or acetoacetylated-[125I]LDL and its fractional catabolic rate was one-half that of [125I]beta-VLDL and one-ninth that of acetoacetylated-[125I]LDL. Forty-eight hours after the injection of the labeled lipoproteins, the hepatic uptake was the greatest among the organs evaluated with the uptake of [125I]LDL being one-third that of either [125I]beta-VLDL or acetoacetylated-[125I]LDL. The reduction in the hepatic uptake of LDL due to a down-regulation of the receptors would account for this retarded plasma clearance.  相似文献   

4.
In normal human monocyte macrophages 125I-labeled beta-migrating very low density lipoproteins (125I-beta-VLDL), isolated from the plasma of cholesterol-fed rabbits, and 125I-human low density lipoprotein (LDL) were degraded at similar rates at protein concentrations up to 50 micrograms/ml. The high affinity degradation of 125I-labeled human LDL saturated at approximately 50 micrograms/ml; however, 125I-labeled rabbit beta-VLDL high affinity degradation saturated at 100-120 micrograms/ml. The activity of the beta-VLDL receptor was 3-fold higher than LDL receptor activity on freshly isolated normal monocyte macrophages, but with time-in-culture both receptor activities decreased and were similar after several days. The degradations of both beta-VLDL and LDL were Ca2+ sensitive, were markedly down regulated by sterols, and were up regulated by preincubation of the cells in a lipoprotein-free medium. The beta-VLDL receptor is genetically distinct from the LDL receptor as indicated by its presence on monocyte macrophages from a familial hypercholesterolemic homozygote. Human thoracic duct lymph chylomicrons as well as lipoproteins of Sf 20-5000 from fat-fed normal subjects inhibited the degradation of 125I-labeled rabbit beta-VLDL as effectively as nonradioactive rabbit beta-VLDL. We conclude: 1) the beta-VLDL receptor is genetically distinct from the LDL receptor, and 2) intestinally derived human lipoproteins are recognized by the beta-VLDL receptor on macrophages.  相似文献   

5.
Beta very low density lipoprotein (VLDL) was isolated from a patient with hepatic lipase deficiency. The particles were found to contain apolipoprotein B-100 (apoB) and apolipoprotein E (apoE) and were rich in cholesterol and cholesteryl ester relative to VLDL with pre beta electrophoretic mobility. These particles were active in displacing human low density lipoprotein (LDL) from the fibroblast apoB,E receptor and produced a marked stimulation of acyl-CoA:cholesterol acyltransferase. Treatment of intact beta-VLDL with trypsin abolished its ability to displace LDL from fibroblasts. Incubation of trypsin treated beta-VLDL with fibroblasts resulted in a significant stimulation of acyl-CoA:cholesterol acyltransferase activity. beta-VLDL isolated from a patient with Type III hyperlipoproteinemia and an apoE2/E2 phenotype had a higher cholesteryl ester/triglyceride ratio than the beta-VLDL of hepatic lipase deficiency and contained apoB48. It displaced LDL from fibroblasts to a small but significant extent. The Type III beta-VLDL stimulated acyl-CoA:cholesterol acyltransferase to a level similar to that of trypsin-treated beta-VLDL isolated from the hepatic lipase-deficient patient. These results demonstrate that the cholesterol-rich beta-VLDL particles present in patients with hepatic lipase deficiency are capable of interacting with fibroblasts via the apoB,E receptor and that this interaction is completely due to trypsin-sensitive components of the beta-VLDL. These particles were very effective in stimulating fibroblast acyl-CoA:cholesterol acyltransferase. This stimulation was due to both trypsin-sensitive and trypsin-insensitive components.  相似文献   

6.
The contribution of the low density lipoprotein (LDL) receptor to the removal of chylomicron remnants was determined in vitro and in vivo by using interventions that up- or down-regulate the LDL receptor but not the LDL receptor-related protein (LRP). In vitro, chylomicron remnants and beta-very low density lipoprotein (VLDL) bind to the LDL receptor on endosomal membranes; their binding can be competed by LDL and beta-VLDL and the binding capacity is greatly augmented in membranes from estradiol-treated rats. Likewise, estradiol treatment almost doubled the removal of chylomicron remnants during a single pass through perfused rat livers. However, in vivo the removal of chylomicron remnants and beta-VLDL was very rapid even in untreated rats so that the effect of the stimulation by estradiol was barely detectable when trace amounts of lipoproteins were injected. Yet, when saturating doses of either lipoprotein were injected, the effect of estradiol treatment on the removal of chylomicron remnants and beta-VLDL was readily disclosed. In rats fed a diet containing lard, cholesterol, and bile acids, removal of chylomicron remnants or beta-VLDL was significantly retarded. Likewise, perfused livers from diet-fed rats removed only a mean of 16% of chylomicron remnants during a single passage as compared to 29% in livers from control animals. Also, when large doses of beta-VLDL had been infused into rats for 4 h, in subsequent perfusions of the livers the removal of chylomicron remnants was decreased to 11%. From these results it is concluded that the LDL receptor mediates the hepatic removal of a major fraction of chylomicron remnants and beta-VLDL.  相似文献   

7.
The metabolism of esterified cholesterol in plasma low density lipoproteins (LDL) has been studied in rabbits. LDL labelled with 3H in the esterified and free cholesterol moieties was isolated from the serum of donar rabbits which has been injected with [3H]mevalonic acid, and subsequently either incubated at 37°C in vitro with unlabelled rabbit serum or unlabelled rabbit lipoprotein fractions, or reinjected into other rabbits.In vitro there was found to be a transfer of 40–60% of the esterified [3H]-cholesterol out of LDL into both the very low density lipoprotein (VLDL) and high density lipoprotein (HDL) fractions which could not be explained in terms of net transfer of esterified cholesterol mass. In the incubations of labelled LDL with either of the other unlabelled lipoprotein fractions, transfers were apparent only if the dialysed 1.21 g/ml infranatant of rabbit serum was also present. The transfer of esterified [3H]cholesterol out of LDL was enhanced when lecithin:cholesterol acyltransferase was active.After reinjecting labelled LDL into other rabbits, it was found that more than half of the esterified [3H]cholesterol removed from the recipient LDL fraction during the first 30 min was not lost from the plasma compartment, but rather was recovered in HDL. There was only minimal in vivo transfer of LDL esterified [3H]cholesterol into VLDL.It has been concluded that in vitro the esterified cholesterol in LDL exchanges with that in both the VLDL and HDL, and that in vivo the esterified cholesterol pools in LDL and HDL may represent parts of a progressively equilibrating plasma pool.  相似文献   

8.
Low density lipoprotein (LDL) internalization by mutant type C Niemann-Pick (NPC) fibroblasts results in uptake of excess total cholesterol. Uptake of excess lipoprotein cholesterol appears to be mediated by the specific LDL receptor pathway. Associated with excessive LDL-cholesterol uptake is a lesion in early intracellular cholesteryl ester synthesis. In vitro acylCoA:cholesterol acyltransferase activity is normal in cell-free extracts of mutant cells. The ability of exogenous sterols to enhance intracellular esterification of [3H]mevalonate-derived [3H]cholesterol was severely limited in mutant cell cultures suggesting that in vivo activation and/or expression of activated acylCoA:cholesterol acyltransferase may be compromised by the primary mutation of type C Niemann-Pick disease. After 2 days of LDL uptake, rates of intracellular cholesteryl ester synthesis in mutant cells paralleled the rates of esterification in normal cells suggesting that specific early in vivo expression of the acyltransferase may be affected in this disorder.  相似文献   

9.
Foam cell formation occurs in vitro at lipoprotein concentrations above 50 microgram/ml in pigeon macrophages. Hypothetically, intracellular trafficking of lipoproteins at higher concentrations may differ from uptake of lipoproteins associated with low concentrations, revealing a separate atherogenic endocytic pathway. Macrophage intracellular trafficking of pigeon beta-very low density lipoprotein (beta-VLDL) and low density lipoprotein (LDL) at low concentrations (12 microgram/ml) near the saturation of high affinity binding sites and high lipoprotein concentrations (50-150 microgram/ml) used to induce foam cell formation were examined. Pigeon beta-VLDL and LDL, differentially labeled with colloidal gold, were added simultaneously to contrast trafficking of beta-VLDL, which causes in vitro foam cell formation, with LDL, which does not. The binding of lipoproteins to cell surface structures, distribution of lipoproteins in endocytic organelles, and the extent of colabeling in the endocytic organelles were determined by thin-section transmission electron microscopy.At low concentrations, the intracellular trafficking of pigeon LDL and beta-VLDL was identical. At high concentrations, LDL was removed more rapidly from the plasma membrane and reached lysosomes more quickly than beta-VLDL. No separate endocytic route was present at high concentrations of beta-VLDL; rather, an increased residence on the plasma membrane, association with nonmicrovillar portions of the plasma membrane, and slower trafficking in organelles of coated-pit endocytosis reflected a more atherogenic trafficking pattern.  相似文献   

10.
beta-Migrating very-low-density lipoproteins (beta-VLDL) are cholesteryl-ester-enriched lipoproteins which accumulate in the serum of cholesterol-fed animals or patients with type III hyperlipoproteinemia. In the rat, beta-VLDL are rapidly cleared by the liver and parenchymal liver cells form the major site for uptake. In this investigation, beta-VLDL were labeled with [3H]cholesteryl esters and the hepatic intracellular transport of these esters was followed. 2 min after injection, the major part of the [3H]cholesteryl esters is already associated with the liver and a significant proportion is recovered in endosomes. Up to 25 min after injection, an increase in radioactivity in the lysosomal compartment is noticed. This radioactivity initially represents cholesteryl esters, while from 25 min onward, radioactivity is mainly present in unesterified cholesterol. Between 45 min and 90 min after beta-VLDL injection, specific transfer of unesterified [3H]cholesterol to the endoplasmic reticulum is observed, while by 3 h the majority is located in this fraction. The appearance of radioactivity in the bile was rather slow as compared to the rapid initial uptake and processing, and up to 5 h after injection only 10% of the injected dose had reached the bile (mainly as bile acids). 72 h after injection, the amount of the injected radioactivity recovered in the bile had increased to 50%. Chloroquine treatment of the rats inhibited the hydrolysis of the cholesteryl esters and the appearance of radioactivity in the bile was retarded. It is concluded that beta-VLDL are rapidly processed by parenchymal liver cells and that the cholesteryl esters from beta-VLDL are hydrolyzed in the lysosomal compartment. Unesterified cholesterol remains associated with the endoplasmic reticulum for a prolonged time, although ultimately the majority will be secreted into the bile as bile acids. The effective operation of this pathway will prevent extrahepatic accumulation of cholesteryl esters from beta-VLDL, while the prolonged residence time of unesterified cholesterol in the endoplasmic reticulum might be important for regulation of low-density lipoprotein (LDL) receptors in liver and thus for LDL levels in the blood.  相似文献   

11.
The murine scavenger receptor class B, type I (mSR-BI) is a receptor for high density lipoprotein (HDL), low density lipoprotein (LDL), and acetylated LDL (AcLDL). It mediates selective uptake of lipoprotein lipid and stimulates efflux of [(3)H]cholesterol to lipoproteins. SR-BI-mediated [(3)H]cholesterol efflux was proposed to be independent of ligand binding. In this study, using anti-mSR-BI antibody KKB-1 and two mSR-BI mutants with altered ligand binding properties, we demonstrated that SR-BI-mediated [(3)H]cholesterol efflux to lipoproteins was correlated with ligand binding and lipid uptake activities of the receptor. The KKB-1 antibody, which blocked lipoprotein binding without substantially altering the cholesterol oxidase-accessible cellular [(3)H]cholesterol, also blocked [(3)H]cholesterol efflux to HDL and LDL. One of the SR-BI mutants, which has a double substitution of arginines for glutamines at positions 402 and 418 (Q402R/Q418R), exhibited a high level of LDL binding and lipid uptake from LDL, but lost most of the corresponding HDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to LDL, but not to HDL. Another mutant, M158R, with an arginine in place of methionine at position 158, exhibited reduced HDL and LDL receptor activities, but apparently normal AcLDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to AcLDL, but not to HDL or LDL. These results suggest that SR-BI-stimulated [(3)H]cholesterol efflux to lipoproteins critically depends on ligand binding to this receptor and raise the possibility that the mechanisms of selective lipid uptake and [(3)H]cholesterol efflux may be intimately related.  相似文献   

12.
Apolipoprotein (apo-) E2 and beta-migrating very low density lipoproteins (beta-VLDL) (which were isolated from type III hyperlipoproteinemic subjects) both demonstrated defective binding to apo-E and apo-B,E receptors on dog liver membranes and to apo-B,E low density lipoproteins (LDL) receptors on fibroblasts. The defective binding activity of the apo-E2 and beta-VLDL varied from very poor to nearly normal. The ability of the beta-VLDL to interact with hepatic apo-E receptors was enhanced by the addition of normal apo-E3 to the beta-VLDL. Furthermore, cysteamine treatment of the apo-E2 in beta-VLDL enhanced binding of the beta-VLDL to both apo-E and apo-B,E receptors. The importance of apo-E in mediating the receptor binding of beta-VLDL to these receptors was confirmed by using monoclonal antibodies. The residual binding activity of beta-VLDL to apo-E and apo-B,E receptors was inhibited by greater than 90% with anti-apo-E, while the addition of anti-apo-B had little effect. The apo-B in the beta-VLDL was capable of binding to apo-B,E receptors after the hydrolysis of the beta-VLDL triglycerides with milk lipoprotein lipase. Lipase treatment yielded, two subfractions of beta-VLDL. One fraction (d = 1.02 to 1.03 g/ml) was enriched with apo-B100; the other fraction (d less than 1.006 g/ml) was enriched with apo-B48 and apo-E2. Significantly increased amounts of the apo-B100-enriched fraction bound to apo-B,E receptors. Inhibition of this binding caused by the addition of anti-apo-B indicated that the binding activity of this subfraction was mediated by apo-B100. The apo-B48-enriched fraction did not show a significant increase in receptor binding, suggesting that apo-B48 does not bind to these receptors. In a control experiment, it was shown that triglyceride-rich VLDL, which contain normal apo-E3 and apo-B100, bind significantly to both liver apo-E receptors and fibroblast apo-B,E receptors. This binding activity was inhibited by greater than 90% with anti-apo-E. Lipase hydrolysis of the VLDL did not further enhance their receptor-binding activity. These results demonstrate that apo-E, and not apo-B, is the major determinant mediating the receptor-binding activity of cholesterol-rich beta-VLDL and triglyceride-rich VLDL.  相似文献   

13.
Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and cellular cholesterol synthesis. Although a defect in cholesterol transport in NPC cells has been inferred from previous studies, no experiments have been reported that measure the intracellular movement of LDL-cholesterol specifically. We have used four approaches to assess intracellular cholesterol transport in normal and NPC cells and have determined the following: (a) mevinolin-inhibited NPC cells are defective in using LDL-cholesterol for growth. However, exogenously added mevalonate restores cell growth equally in normal and NPC cells; (b) the transport of LDL-derived [3H]cholesterol to the plasma membrane is slower in NPC cells, while the rate of appearance of [3H]acetate-derived, endogenously synthesized [3H]cholesterol at the plasma membrane is the same for normal and NPC cells; (c) in NPC cells, LDL-derived [3H]cholesterol accumulates in lysosomes to higher levels than normal, resulting in defective movement to other cell membranes; and (d) incubation of cells with LDL causes an increase in cholesterol content of NPC lysosomes that is threefold greater than that observed in normal lysosomes. Our results indicate that a cholesterol transport defect exists in NPC that is specific for LDL-derived cholesterol.  相似文献   

14.
Changes in low density lipoprotein (LDL) lipid composition were shown to alter its interaction with the LDL receptor, thus affecting its cellular uptake. Upon incubation of LDL with 5 units/ml cholesterol esterase (CEase) for 1 h at 37 degrees C, there was a 33% reduction in lipoprotein cholesteryl ester content, paralleled by an increment in its unesterified cholesterol. CEase-LDL, in comparison to native LDL, was smaller in size, possessed fewer free lysine amino groups (by 14%), and demonstrated reduced binding to heparin (by 83%) and reduced immunoreactivity against monoclonal antibodies directed toward epitopes along the LDL apoB-100. Incubation of CEase-LDL with the J-774 macrophage-like cell line resulted in about a 30% reduction in lipoprotein binding and degradation in comparison to native LDL, and this was associated with a 20% reduction in macrophage cholesterol mass. Similarly, CEase-LDL degradation by mouse peritoneal macrophages, human monocyte-derived macrophages, and human skin fibroblasts was reduced by 20-44% in comparison to native LDL. CEase-LDL uptake by macrophages was mediated via the LDL receptor and not the scavenger receptor. CEase activity toward LDL was demonstrated in plasma and in cells of the arterial wall such as macrophages and endothelial cells. Thus, CEase modification of LDL may take place in vivo, and this phenomenon may have a role in atherosclerosis.  相似文献   

15.
Previous studies have examined lipoprotein metabolism by macrophages following prolonged exposure (>24 h) to macrophage colony-stimulating factor (M-CSF). Because M-CSF activates several signaling pathways that could rapidly affect lipoprotein metabolism, we examined whether acute exposure of macrophages to M-CSF alters the metabolism of either native or modified lipoproteins. Acute incubation of cultured J774 macrophages and resident mouse peritoneal macrophages with M-CSF markedly enhanced low density lipoproteins (LDL) and beta-migrating very low density lipoproteins (beta-VLDL) stimulated cholesteryl [(3)H]oleate deposition. In parallel, M-CSF treatment increased the association and degradation of (125)I-labeled LDL or beta-VLDL without altering the amount of lipoprotein bound to the cell surface. The increase in LDL and beta-VLDL metabolism did not reflect a generalized effect on lipoprotein endocytosis and metabolism because M-CSF did not alter cholesterol deposition during incubation with acetylated LDL. Moreover, M-CSF did not augment beta-VLDL cholesterol deposition in macrophages from LDL receptor (-/-) mice, indicating that the effect of M-CSF was mediated by the LDL receptor. Incubation of macrophages with pertussis toxin, a specific inhibitor of G(i/o) protein signaling, had no effect on cholesterol deposition during incubation with beta-VLDL alone, but completely blocked the augmented response promoted by M-CSF. In addition, incubation of macrophages with the direct G(i/o) protein activator, mastoparan, mimicked the effect of M-CSF by enhancing cholesterol deposition in cells incubated with beta-VLDL, but not acetylated LDL. In summary, M-CSF rapidly enhances LDL receptor-mediated metabolism of native lipoproteins by macrophages through activation of a G(i/o) protein signaling pathway. Together, these findings describe a novel pathway for regulating lipoprotein metabolism.  相似文献   

16.
Human low density lipoprotein (LDL), radiolabeled in the cholesteryl ester moiety, was injected into estrogen-treated and -untreated rats. The hepatic and extrahepatic distribution and biliary secretion of [3H]cholesteryl esters were determined at various times after injection. In order to follow the intrahepatic metabolism of the cholesteryl esters of LDL in vivo, the liver was subfractioned into parenchymal and Kupffer cells by a low temperature cell isolation procedure. In control rats, the LDL cholesteryl esters were mainly taken up by the Kupffer cells. After uptake, the [3H]cholesteryl esters are rapidly hydrolyzed, followed by release of [3H]cholesterol from the cells to other sites in the body. Up to 24 h after injection of LDL, only 9% of the radioactivity appeared in the bile, whereas after 72 h, this value was 30%. Hepatic and especially the parenchymal cell uptake of [3H]cholesteryl esters from LDL was strongly increased upon 17 alpha-ethinylestradiol treatment (3 days, 5 mg/kg). After rapid hydrolysis of the esters, [3H]cholesterol was both secreted into bile (28% of the injected dose in the first 24 h) as well as stored inside the cells as re-esterified cholesterol ester. It is concluded that uptake of human LDL by the liver in untreated rats is not efficiently coupled to biliary secretion of cholesterol (derivatives), which might be due to the anatomical localization of the principal uptake site, the Kupffer cells. In contrast, uptake of LDL cholesterol ester by liver hepatocytes is tightly coupled to bile excretion. The Kupffer cell uptake of LDL might be necessary in order to convert LDL cholesterol (esters) into a less toxic form. This activity can be functional in animals with low receptor activity on hepatocytes, as observed in untreated rats, or after diet-induced down-regulation of hepatocyte LDL receptors in other animals.  相似文献   

17.
The cholesterol oxidase-catalyzed oxidation of cholesterol in native low density (LDL) and high density lipoproteins (HDL3) as well as in monolayers prepared from surface lipids of these particles, has been examined. The objective of the study was to compare the oxidizability of cholesterol, and to examine the effects of lipid packing on oxidation rates. When [3H]cholesterol-labeled lipoproteins were exposed to cholesterol oxidase (Streptomyces sp.), it was observed that LDL [3H]cholesterol was oxidized much faster than HDL3 [3H]cholesterol. This was true both at equal cholesterol concentration per enzyme unit, and at equal amounts of lipoprotein particles per enzyme unit. About 95% of lipoprotein [3H]cholesterol was available for oxidation. The complete degradation of lipoprotein sphingomyelin by sphingomyelinase (Staphylococcus aureus) resulted in a 10-fold increase in the rate of LDL [3H]cholesterol oxidation, whereas the effects on rates of HDL3 [3H]cholesterol oxidation were less dramatic. A monolayer study with LDL surface lipids indicated that degradation of sphingomyelin loosened the lipid packing, because the ceramide formed occupied a smaller surface area than the parent sphingomyelin, and since the condensing effect of cholesterol on sphingomyelin packing was lost. The effects of sphingomyelin degradation on lipid packing in monolayers of HDL3-derived surface lipids were difficult to determine from monolayer experiments. Based on the finding that cholesterol oxidases are surface pressure-sensitive with regard to their catalytic activity, these were used to estimate the surface pressure of intact LDL and HDL3. The cut-off surface pressure of a Brevibacterium enzyme was 25 mN/m and 20 mN/m in monolayers of LDL and HDL3-derived surface lipids, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Hypercholesterolemic rabbit beta-VLDL and human LDL are both internalized by mouse peritoneal macrophages by receptor-mediated endocytosis. However, only beta-VLDL (which binds to the cells with a much higher affinity than LDL) markedly stimulates acyl-CoA/cholesterol acyl transferase (ACAT) and induces foam cell formation in these cells. As an initial step to test whether the two lipoproteins might be targeted to different organelles (which might differ in their ability to deliver cholesterol to microsomal ACAT), we studied the endocytic pathways of beta-VLDL and LDL. Lipoproteins were labeled with the non-transferable fluorescent label, DiI. When the macrophages were incubated with DiI-LDL for 10 min at 37 degrees C, the fluorescence was concentrated near the center of the cell both in heavily labeled vesicles and in a diffuse pattern. The pattern with DiI-beta-VLDL was quite different: an array of bright vesicles throughout the cytoplasm was the predominant feature. Differences in distribution were seen as early as 2 min of incubation and persisted throughout a 10-min chase period. By using a procedure in which photobleaching of DiI fluorescence converts diaminobenzidine into an electron-dense marker, we were able to identify at the ultrastructural level vesicles containing electron-dense material in cells incubated with DiI-beta-VLDL. Human E2/E2 beta-VLDL (from a patient with familial dysbetalipoproteinemia), which has a binding affinity and ACAT-stimulatory potential similar to LDL, gave a pattern of fluorescence virtually identical to LDL. Pulse-chase studies with 125I-labeled and [3H]cholesteryl ester-labeled lipoproteins disclosed that both protein degradation and cholesteryl ester hydrolysis were markedly retarded in beta-VLDL compared with LDL. Thus, in mouse peritoneal macrophages, endocytosed beta-VLDL appears in a distinct set of widely-distributed vesicles not seen with LDL (or with E2-beta-VLDL) and, compared with LDL, has a markedly diminished rate of protein degradation and cholesteryl ester hydrolysis. The differential routing of LDL and beta-VLDL may provide a mechanism for differences in ACAT-stimulatory potential between the two lipoproteins.  相似文献   

19.
Regulation of low-density-lipoprotein-receptor activity by low-density lipoprotein (LDL), cholesteryl-ester-rich beta-migrating very-low-density lipoprotein (beta-VLDL) and non-lipoprotein cholesterol was investigated in the human hepatoma cell line Hep G2. Competition studies indicate that LDL and beta-VLDL are bound to the same recognition site, tentatively the LDL receptor. The regulatory response of the LDL receptor upon prolonged incubation with LDL or beta-VLDL was, however, markedly different. 22 h preincubation of Hep G2 cells with excess LDL caused a partial down regulation to 31% of the initial level of the high-affinity association of LDL and 26% of the high-affinity degradation of LDL, while with beta-VLDL a complete down regulation of the LDL-receptor activity is observed. Preincubation of Hep G2 cells with beta-VLDL for 22 h led to a fourfold increase in intracellular cholesterol esters and a twofold increase in acyl-coA:cholesterol acyltransferase activity. With LDL, the amount of intracellular cholesterol esters is increased 1.6-fold. The more effective down regulation of LDL receptors by beta-VLDL as compared to LDL can be explained by the more effective intracellular cholesterol delivery with beta-VLDL than with LDL. Preincubation of Hep G2 cells for 22 h with acetylated LDL hardly influenced the LDL-receptor activity. Non-lipoprotein cholesterol, however, caused a complete down regulation of LDL-receptor activity at even lower extracellular cholesterol concentrations than with beta-VLDL. The complete down regulation of LDL receptors by non-lipoprotein cholesterol is not accompanied by a significant increase in acyl-coA:cholesterol acyltransferase activity, while the intracellular cholesterol ester concentration is only increased 1.6-fold. It is suggested that the effectiveness of non-lipoprotein cholesterol to regulate LDL receptors is caused by its efficiency to reach the sterol regulatory site. The inability of LDL to down regulate its receptor completely can thus be explained by the inability of LDL to deliver cholesterol adequately at the intracellular regulatory site of the LDL receptor. The observed complete down regulation of the LDL receptor by beta-VLDL may be responsible for the cholesterol-rich-diet induced, complete down regulation of LDL-receptor-mediated clearance of LDL in vivo.  相似文献   

20.
The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [3H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [3H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [3H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号