首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Saccharomyces cerevisiae strain AH22 was capable of human P4501A1 expression without detectable background of yeast P450, unlike ATCC44773. Repeated backcrossing to AH22 produced a strain allowing transformation by vectors carrying various common selectable markers. Background yeast xenobiotic metabolism was observed only with growth on complex medium.  相似文献   

2.
The antibiotics chloramphenicol (Cm), tetracycline, and erythromycin, which inhibit bacterial protein synthesis and are known to induce the cold shock response, unexpectedly enhance the heterologous expression of P450s and related proteins in Escherichia coli. In contrast, antibiotics that mimic heat shock in E. coli such as puromycin, streptomycin, and kanamycin decrease the expression of the same proteins. A sublethal dose of Cm (1 microgram/ml) effectively enhances the expression of both membrane-bound proteins (microsomal and mitochondrial P450s) and a soluble mitochondrial protein (adrenodoxin) over the range of two- to eightfold. The expression level of N-terminal truncated P450c17 (1600 nmol/liter culture without Cm), for instance, reached 3500 nmol/liter culture by the addition of Cm, approximately 8.4% of the total cellular protein. Cm also enabled expression at useful levels of active P450s previously difficult to express in E. coli. In contrast, the expression of P450scc, a mitochondrial protein, is decreased by Cm but enhanced by ethanol, a powerful elicitor of heat shock response in E. coli. These results show that both the cold shock response induced by some antibiotics and the heat shock response induced by ethanol may lead to enhanced expression of certain heterologous proteins in E. coli. This study also indicates that protein synthesis inhibitors associated with the cold shock response may act as protein synthesis enhancers under certain conditions.  相似文献   

3.
4.
A thorough understanding of the sequence–structure–function relationships of cytochrome P450 (P450) is necessary to better understand the metabolic diversity of living organisms. Significant amounts of pure enzymes are sometimes required for biochemical studies, and their acquisition often relies on the possibility of their heterologous expression. In this study, we performed extensive heterologous expression of fungal P450s in Escherichia coli using 304 P450 isoforms. Using large-scale screening, we confirmed that at least 27 P450s could be expressed with/without simple sequence deletion at the 5′ end of cDNAs, which encode the N-terminal hydrophobic domain of the enzyme. Moreover, we identified N-terminal amino acid sequences that can potentially be used to construct chimeric P450s, which could dramatically improve their expression levels even when the expression of the wild-type sequence was unpromising. These findings will help increase the chance of heterologous expression of a variety of fungal and other eukaryotic membrane-bound P450s in E. coli.  相似文献   

5.
The cytochrome P450 enzymes (CYPs) CYP-sb21 from Sebekia benihana and CYP-pa1 from Pseudonocardia autotrophica are able to hydroxylate the immunosuppressant cyclosporin A (CsA) in a regioselective manner, giving rise to the production of two hair-stimulating agents (with dramatically attenuated immunosuppressant activity), γ-hydroxy-N-methyl-l-Leu4-CsA (CsA-4-OH) and γ-hydroxy-N-methyl-l-Leu9-CsA (CsA-9-OH). Recently, the in vitro activity of CYP-sb21 was identified using several surrogate redox partner proteins. Herein, we reconstituted the in vitro activity of CYP-pa1 for the first time via a similar strategy. Moreover, the supporting activities of a set of ferredoxin (Fdx)/ferredoxin reductase (FdR) pairs from the cyanobacterium Synechococcus elongatus PCC 7942 were comparatively analyzed to identify the optimal redox systems for these two CsA hydroxylases. The results suggest the great value of cyanobacterial redox partner proteins for both academic research and industrial application of P450 biocatalysts.  相似文献   

6.
Cytochrome P450 46A1 (CYP46A1) and NADPH-cytochrome P450 oxidoreductase (CPR) are the components of the brain microsomal mixed-function monooxygenase system that catalyzes the conversion of cholesterol to 24-hydroxycholesterol. Both CYP46A1 and CPR are monotopic membrane proteins that are anchored to the endoplasmic reticulum via the N-terminal transmembrane domain. The exact mode of peripheral association of CYP46A1 and CPR with the membrane is unknown. Therefore, we studied their membrane topology by using an approach in which solution-exposed portion of heterologously expressed membrane-bound CYP46A1 or CPR was removed by digestion with either trypsin or chymotrypsin followed by extraction of the residual peptides and their identification by mass spectrometry. The identified putative membrane-interacting peptides were mapped onto available crystal structures of CYP46A1 and CPR and the proteins were positioned in the membrane considering spatial location of the missed cleavage sites located within these peptide as well as the flanking residues whose cleavage produced these peptides. Experiments were then carried out to validate the inference from our studies that the substrate, cholesterol, enters CYP46A1 from the membrane. As for CPR, its putative membrane topology indicates that the Q153R and R316W missense mutations found in patients with disordered steroidogenesis are located within the membrane-associated regions. This information may provide insight in the deleterious nature of these mutations.  相似文献   

7.
In this study, a 3.7-kb DNA fragment was cloned from Rhodococcus sp. ECU0066, and the sequence was analyzed. It was revealed that the largest one (2,361 bp) of this gene fragment encodes a protein consisting of 787 amino acids, with 73% identity to P450RhF (accession number AF45924) from Rhodococcus sp. NCIMB 9784. The gene of this new P450 monooxygenase (named as P450SMO) was successfully expressed in Escherichia coli BL21 (DE3), and the enzyme was also purified and characterized. In the presence of reduced nicotinamide adenine dinucleotide phosphate, the enzyme showed significant sulfoxidation activity towards several sulfides, with (S)-sulfoxides as the predominant product. The p-chlorothioanisole, p-fluorothioanisole, p-tolyl methyl sulfide, and p-methoxythioanisole showed relatively higher activities than the other sulfides, but the stereoselectivity for p-methoxythioanisole was much lower. The optimal activity of the purified enzyme toward p-chlorothioanisole occurred at pH 7.0 and 30°C. The current study is the first to report a recombinant cytochrome P450 enzyme of Rhodococcus sp. which is responsible for the asymmetric oxidation of sulfides. The new enzymatic activity of P450SMO on the above compounds makes it an attractive biocatalyst for asymmetric synthesis of enantiopure sulfoxides.  相似文献   

8.
Rabbit antibodies raised against the hydrophilic part of microsomal NADPH-cytochrome P450 oxidoreductase (denoted fpT) demonstrated a marked ability to inhibit NADPH-sterol Delta7-reductase activity. In addition, trypsin and proteinase K treatment of microsomes removed almost all microsomal electron transfer constituents from the microsomes, but the Delta7-reductase activity could be reconstituted by adding detergent-solubilized NADPH-cytochrome P450 oxidoreductase (denoted OR). Furthermore, after solubilization from microsomes, the Delta7-reductase activity could be reconstituted with OR in a DEAE-cellulose column chromatography eluate fraction, which contained little OR activity. In the microsomal system, carbon monoxide, ketoconazole, and miconazole, specific inhibitors of cytochrome P450, had no effect on Delta7-reductase activity. These results provide the first evidence of an essential requirement of OR, which is distinct from cytochrome P450, in the NADPH-sterol Delta7-reductase system. EDTA, o-phenanthroline and KCN markedly lowered Delta7-reductase activity in a dose-dependent manner. Among metal ions tested, only ferric ion restored the reductase activity in the EDTA-treated microsomes. These results sugguest that NADPH-sterol Delta7-reductase is membrane-bound iron-dependent protein embedded in the microsomal lipid bilayer.  相似文献   

9.
Combination of the pYeDP60 yeast expression system with a modified version of the improved uracil-excision (USER) cloning technique provides a new powerful tool for high-throughput expression of eukaryotic cytochrome P450s. The vector presented is designed to obtain an optimal 5' untranslated sequence region for yeast (Kozak consensus sequence), and has been tested to produce active P450s and NADPH-cytochrome P450 oxidoreductase (CPR) after 5' end silent codon optimization of the cDNA sequences. Expression of two plant cytochrome P450s, Sorghum bicolor CYP79A1 and CYP71E1, and S. bicolor CPR2 using the modified pYeDP60 vector in all three cases produced high amounts of active protein. High-throughput functional expression of cytochrome P450s have long been a troublesome task due to the workload involved in cloning of each individual P450 into a suitable expression vector. The redesigned yeast P450 expression vector (pYeDP60u) offers major improvements in cloning efficiency, speed, fidelity, and simplicity. The modified version of the USER cloning system provides great potential for further development of other yeast vectors, transforming these into powerful high-throughput expression vectors.  相似文献   

10.
11.
To elucidate the nature of substrate specificity and intrinsic mechanism of hydroxylation of steroids, in the present work we carried out molecular cloning and heterologous expression of cDNA for three new forms of cytochrome P45017 from species of the Bovidae family (sheep, goat, and bison), which catalyze 17-hydroxylation of both progesterone (P4) or pregnenolone (P5) and 17,20-lyase reaction resulting in cleavage of side chain with formation of C19-steroids. Recombinant cytochromes P45017 were expressed in E. coli as derivatives, containing a six-His tag at the C-terminal sequence that simplifies purification of the cloned heme proteins using metal-affinity chromatography. Highly purified cytochromes P45017 were used for determination of enzyme activity and specificity in relation to progesterone, pregnenolone, 17-hydroxyprogesterone, and 17-hydroxypregnenolone with registration of the kinetics of reaction product formation using HPLC. It is shown that each form of cytochrome P45017 is characterized by a specific profile of enzyme activity and dependence of 17,20-lyase reaction on the presence of cytochrome b5 in the reaction mixture. The analysis of the activity of the known forms of cytochrome P45017 in view of the data obtained in the present work allows the division of known cytochromes P45017 into three main group: group A (pig, hamster, rat), cytochromes P45017 catalyze the reaction of 17-hydroxylation of both P4 and P5 steroids and the 17,20-lyase reaction of 17-hydroxyprogesterone and 17-hydroxypregnenolone; group B (human, bovine, sheep, goat, and bison), cytochromes P45017, which have no or have insignificant 17,20-lyase activity in relation to 17-hydroxyprogesterone; group C (guinea pig), cytochrome P45017 which either has no or has insignificant 17,20-lyase activity on transformation 17-hydroxypregnenolone to dehydroepiandrosterone.  相似文献   

12.
The cDNA of cytochrome P450 (CYP) 2C43 was cloned from cynomolgus monkey liver by RT-PCR. The deduced amino acid sequence showed 93% and 91% identity to human CYP2C9 and CYP2C19, respectively. The cDNA was expressed in Escherichia coli and purified by a series of chromatography steps, yielding a specific content of 11.5 nmol P450/mg protein. The substrate specificity of the purified CYP2C43 was examined in a reconstitution system comprising NADPH-P450 reductase, lipid, cytochrome b(5) and CYP2C marker substrates. The purified CYP2C43 showed high activity for testosterone 17-oxidation and progesterone 21-hydroxylation, which were also observed for CYP2C19 but not CYP2C9. In addition, CYP2C43 showed activity for (S)-mephenytoin 4'-hydroxylation, a marker reaction for CYP2C19. With CYP2C9 marker substrates, CYP2C43 exhibited low activity for diclofenac 4'-hydroxylation and no activity for tolbutamide p-methylhydroxylation. Therefore, in terms of substrate specificity, our results indicate that CYP2C43 is similar to CYP2C19, rather than CYP2C9.  相似文献   

13.
The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1.  相似文献   

14.
Systems biotechnology has been established as a highly potent tool for bioprocess development in recent years. The applicability to complex metabolic processes such as protein synthesis and secretion, however, is still in its infancy. While yeasts are frequently applied for heterologous protein production, more progress in this field has been achieved for bacterial and mammalian cell culture systems than for yeasts. A critical comparison between different protein production systems, as provided in this review, can aid in assessing the potentials and pitfalls of applying systems biotechnology concepts to heterologous protein producing yeasts. Apart from modelling, the methodological basis of systems biology strongly relies on postgenomic methods. However, this methodology is rapidly moving so that more global data with much higher sensitivity will be achieved in near future. The development of next generation sequencing technology enables an unexpected revival of genomic approaches, providing new potential for evolutionary engineering and inverse metabolic engineering.  相似文献   

15.
Many clostridial proteins are poorly produced in Escherichia coli. It has been suggested that this phenomena is due to the fact that several types of codons common in clostridial coding sequences are rarely used in E. coli and the quantities of the corresponding tRNAs in E. coli are not sufficient to ensure efficient translation of the corresponding clostridial sequences. To address this issue, we amplified three E. coli genes, ileX, argU, and leuW, in E. coli; these genes encode tRNAs that are rarely used in E. coli (the tRNAs for the ATA, AGA, and CTA codons, respectively). Our data demonstrate that amplification of ileX dramatically increased the level of production of most of the clostridial proteins tested, while amplification of argU had a moderate effect and amplification of leuW had no effect. Thus, amplification of certain tRNA genes for rare codons in E. coli improves the expression of clostridial genes in E. coli, while amplification of other tRNAs for rare codons might not be needed for improved expression. We also show that amplification of a particular tRNA gene might have different effects on the level of protein production depending on the prevalence and relative positions of the corresponding codons in the coding sequence. Finally, we describe a novel approach for improving expression of recombinant clostridial proteins that are usually expressed at a very low level in E. coli.  相似文献   

16.
本文克隆了东亚飞蝗Locusta migratoria manilensis(Meyen)细胞色素P450(cytochrome P450)基因全长,表达重组蛋白,并对其可溶性进行了分析。通过提取东亚飞蝗总的RNA,反转录成cDNA,设计特异性引物,PCR克隆东亚飞蝗细胞色素P450基因,将测序正确的目的片段克隆至原核表达载体pET-28a中,在大肠埃希菌Escherichia coli Rosetta中用异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达。用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)检测重组蛋白表达结果。结果表明:东亚飞蝗细胞色素P450基因开放阅读框全长为1 551 bp,编码516个氨基酸,与GenBank中已登录的东亚飞蝗细胞色素P450基因(HM153426)的同源性为99%,重组质粒pET-28a-P450在E.coli Rosetta中获得高效表达,重组蛋白相对分子质量(Mr)约为53 000,主要以包涵体的形式存在。  相似文献   

17.
The effects of beta-naphthoflavone on the inducibility of hepatic P1-450 and P3-450 mRNA were investigated in male B10.RIII/Sn, C57BL/10Sn, C3H/HeSnJ, and A/WYSn mice. Previous work has shown that the maximum level of aryl hydrocarbon hydroxylase induction in these strains correlates with maximum life span. In this study we found that the maximum inducible levels of P1- and P3-450 RNA were significantly different among the strains, and these levels also correlate with life span. The differences were not due to strain-specific differences in the kinetics of P1- or P3-450 RNA induction. The differences were specific to expression of the P-450 genes, since the levels of hepatic alpha-actin and albumin RNA were not significantly different among the strains, and specific RNA levels were normalized to the level of total polyadenylated RNA. beta-Naphthoflavone was found to induce alpha-actin mRNA approximately 2-fold and to transiently repress albumin RNA about 50% in all mouse strains. Maximum P1- and P3-450 gene expression correlated directly with the 10th deciles of survival of the mouse strains. Longer-lived strains expressed higher combined levels of P1- and P3-450 RNAs. Maximum P1- and P3-450 gene expression also correlated generally with the reported aryl hydrocarbon hydroxylase receptor levels of each strain. It is unlikely that the hepatic P1- and P3-450 genes are ever maximally induced under the sheltered laboratory conditions used to determine maximum life span, as we consistently find very low levels of P-450 expression in uninduced animals. These uninduced levels were not statistically different between the strains. Therefore, the reason for the relationship between maximum life span and maximum P1- and P3-450 inducibility is unclear at present.  相似文献   

18.
19.
Enterocin P (EntP), a sec-dependent bacteriocin from Enterococcus faecium P13, was produced by Lactococcus lactis. The EntP structural gene (entP) with or without the EntP immunity gene (entiP) was cloned in (1), plasmid pMG36c under control of the lactococcal constitutive promoter P32, (2) in plasmid pNG8048e under control of the inducible PnisA promoter, and (3) in the integration vector pINT29. Introduction of the recombinant vectors in L. lactis resulted in production of biologically active EntP in the supernatants of L. lactis subsp. lactis IL1403 and L. lactis subsp. cremoris NZ9000, and the coproduction of nisin A and EntP in L. lactis subsp. lactis DPC5598. The level of production of EntP, detected and quantified by specific anti-EntP antibodies and a noncompetitive indirect enzyme-linked immunosorbent assay, by the recombinant L. lactis strains depended on the host strain, the expression vector, and the presence of the entiP gene in the constructs of the recombinant L. lactis strains. The highest amount of EntP was produced with derivatives containing entP and entiP, for both L. lactis IL1403 and L. lactis NZ9000. These derivatives produced up to five- to six-fold more EntP than E. faecium P13. Mass spectrometry analysis revealed that EntP purified from L. lactis IL1403 (pJP214) has a molecular mass identical to that purified from E. faecium P13, suggesting that the synthesis, processing, and secretion of EntP progresses efficiently in recombinant L. lactis hosts.  相似文献   

20.
Mammalian cytochrome P450 (P450) cDNAs were modified by partial or complete removal of their untranslated regions (UTRs). Expression efficiency of P450s in Saccharomyces cerevisiae was increased by the complete removal of the UTRs from the P450 cDNAs prior to insertion into an expression vector. A similar modification was effective in improving the expression of mammalian NADPH-P450 oxidoreductases in S. cerevisiae. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号