首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Targeting proteins to their correct cellular location is crucial for their biological function. In neuroendocrine cells, proteins can be secreted by either the constitutive or the regulated secretory pathways but the mechanism(s) whereby proteins are sorted into either pathway is unclear. In this review we discuss the possibility that sorting is either an active process occurring at the level of the trans-Golgi network, or that sorting occurs passively in the immature granules, The possible involvement of protein-lipid interactions in the sorting process is also raised.  相似文献   

2.
We expressed the synaptic vesicle proteins SV2, synaptotagmin, and synaptophysin in CHO fibroblasts to investigate the targeting information contained by each protein. All three proteins entered different cellular compartments. Synaptotagmin was found on the plasma membrane. Both SV2 and synaptophysin were sorted to small intracellular vesicles, but synaptophysin colocalized with early endosomal markers, while SV2 did not. SV2-containing vesicles did not have the same sedimentation characteristics as authentic synaptic vesicles, even though transfected SV2 was sorted from endosomal markers. We also created cell lines expressing both SV2 and synaptotagmin, both synaptotagmin and synaptophysin, and lines expressing all three synaptic vesicle proteins. In all cases, the proteins maintained their distinct compartmentalizations, were not found in the same organelle, and did not created synaptic vesicle-like structures. These results have important implications for models of synaptic vesicle biogenesis.  相似文献   

3.
Flow cytometry approaches are applicable to recover sub-populations of microbial cultures in a purified form. To examine the characteristics of each sorted cell population, Omics technologies can be used for comprehensively monitoring cellular physiology, adaptation reactions, and regulated processes. In this study, we combined flow cytometry and gel-free proteomic analysis to investigate an artificial mixed bacterial culture consisting of Escherichia coli K-12 and Pseudomonas putida KT2440. Therefore, a filter-based device technique and an on-membrane digestion protocol were combined in conjunction with liquid chromatography and mass spectrometry. This combination enabled us to identify 903 proteins from sorted E. coli K-12 and 867 proteins from sorted P. putida KT2440 bacteria from only 5 × 106 cells of each. Comparative proteomic analysis of sorted and non-sorted samples was done to prove that sorting did not significantly influence the bacterial proteome profile. We further investigated the physicochemical properties, namely M r, pI, hydropathicity, and transmembrane helices of the proteins covered. The on-membrane digestion protocol applied did not require conventional detergents or urea, but exhibited similar recovery of all protein classes as established protocols with non-sorted bacterial samples.  相似文献   

4.
Transport to the vacuole: receptors and trans elements   总被引:3,自引:0,他引:3  
Most proteins that are synthesized on membrane-bound ribosomes are transported through the Golgi and reach the trans-Golgi network to be sorted for delivery to various cellular destinations, including the vacuole. Sorting involves a recognition of proteins by receptors and the assembly of cytosol-oriented coat structures that package cargo into vesicles. Vesicle trafficking is regulated by specific membrane-bound and soluble proteins. Several components of the secretory machinery have recently been identified in plants and are described in this review. Ongoing and future research will characterize features of the secretory pathway specific to plants which, because of the multiplicity of vacuole types, provide a more complex paradigm than the better described mammalian and yeast systems.  相似文献   

5.
Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%-80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species.  相似文献   

6.
In simple epithelial cells, apical and basolateral proteins are sorted into separate vesicular carriers before delivery to the appropriate plasma membrane domains. To dissect the putative sorting machinery, we have solubilized Golgi-derived transport vesicles with the detergent CHAPS and shown that an apical marker, influenza haemagglutinin (HA), formed a large complex together with several integral membrane proteins. Remarkably, a similar set of CHAPS-insoluble proteins was found after solubilization of a total cellular membrane fraction. This allowed the cloning of a cDNA encoding one protein of this complex, VIP21 (Vesicular Integral-membrane Protein of 21 kD). The transiently expressed protein appeared on the Golgi-apparatus, the plasma membrane and vesicular structures. We propose that VIP21 is a component of the molecular machinery of vesicular transport.  相似文献   

7.
Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.  相似文献   

8.
Protein tau, a major microtubule-binding protein in the brain, comprises six isoforms generated through alternative mRNA splicing. A dysfunctional form of mutant and normal tau is associated or implicated in the pathogenesis of several neurodegenerative disorders. The neuropathological hallmark of these tau-opathies are intraneuronal depositions of fibrillary aggregates of which neurofibrillary tangles are most common. Several distinct transgene mouse models confirmed that tau protein can cause neurodegeneration directly. This study was aimed at identifying proteins that might play a role in the cellular disturbances caused by overexpression of the longest isoform of human tau in the brain of transgenic mice. We found 34 proteins which differed in integrated intensity by a factor of at least 1.5. These proteins could be sorted into several categories. Some of the phenotypic characteristics found in the htau transgenic mice could be related to proteins found in this study. Several proteins are linked to processes involving apoptosis and neuronal death and have been discussed in papers describing neurodegenerative disorders.  相似文献   

9.
Characteristics of endoplasmic reticulum-derived transport vesicles   总被引:21,自引:6,他引:15       下载免费PDF全文
《The Journal of cell biology》1994,126(5):1133-1148
We have isolated vesicles that mediate protein transport from the ER to Golgi membranes in perforated yeast. These vesicles, which form de novo during in vitro incubations, carry lumenal and membrane proteins that include core-glycosylated pro-alpha-factor, Bet1, Sec22, and Bos1, but not ER-resident Kar2 or Sec61 proteins. Thus, lumenal and membrane proteins in the ER are sorted prior to transport vesicle scission. Inhibition of Ypt1p-function, which prevents newly formed vesicles from docking to cis-Golgi membranes, was used to block transport. Vesicles that accumulate are competent for fusion with cis-Golgi membranes, but not with ER membranes, and thus are functionally committed to vectorial transport. A 900-fold enrichment was developed using differential centrifugation and a series of velocity and equilibrium density gradients. Electron microscopic analysis shows a uniform population of 60 nm vesicles that lack peripheral protein coats. Quantitative Western blot analysis indicates that protein markers of cytosol and cellular membranes are depleted throughout the purification, whereas the synaptobrevin-like Bet1, Sec22, and Bos1 proteins are highly enriched. Uncoated ER-derived transport vesicles (ERV) contain twelve major proteins that associate tightly with the membrane. The ERV proteins may represent abundant cargo and additional targeting molecules.  相似文献   

10.
《The Journal of cell biology》1985,101(5):1999-2011
We report on the biochemical and immunological properties as well as on the cellular and subcellular distribution of two proteins, called secretogranins I and II. These proteins specifically occur in a wide variety of endocrine and neuronal cells that package and sort regulatory peptides into secretory granules. Both secretogranins take the same intracellular route as the peptides and are also sorted into secretory granules. Secretogranins I and II are biochemically and immunologically distinct proteins and differ from chromogranin A. Yet, these three proteins are similar to each other in many respects and therefore constitute one class of proteins. A remarkable feature of this protein class is a very acidic pI, brought about by a high content of acidic amino acids as well as by phosphorylation on serine and sulfation on tyrosine and O-linked carbohydrate. As a result, this class of proteins has a high net negative charge even at the acidic pH of the trans Golgi cisternae. We discuss the possibility that this property of the proteins may point to a role in the packaging of regulatory peptides into secretory granules.  相似文献   

11.
The physiologic function of an ion transport protein is determined, in part, by its subcellular localization and by the cellular mechanisms that modulate its activity. The Na(+),K(+)-ATPase and the H(+),K(+)-ATPases are closely related members of the P-type family of ion transporting ATPases. Despite their homology, these pumps are sorted to different domains in polarized epithelial cells, and their enzymatic activities are subject to distinct regulatory pathways. The molecular signals responsible for these properties have begun to be elucidated. It appears that a complex array of inter- and intramolecular interactions govern trafficking, distribution, and catalytic capacities of these proteins.  相似文献   

12.
Increased expression of protease-activated receptor 1 (PAR1), a G protein-coupled receptor for thrombin, has previously been correlated with breast carcinoma cell invasion. PAR1 is irreversibly proteolytically activated, internalized, and sorted directly to lysosomes, a critical process for the termination of signaling. We determined that activated PAR1 trafficking is severely altered in metastatic breast carcinoma cells but not in nonmetastatic or normal breast epithelial cells. Consequently, the proteolytically activated receptor is not sorted to lysosomes and degraded. Altered trafficking of proteolytically activated PAR1 caused sustained activation of phosphoinositide hydrolysis and extracellular signal-regulated kinase signaling, even after thrombin withdrawal, and enhanced cellular invasion. Thus, our results reveal that a novel alteration in trafficking of activated PAR1 causes persistent signaling and, in addition to other processes and proteins, contributes to breast carcinoma cell invasion.  相似文献   

13.
Protein sorting upon exit from the endoplasmic reticulum   总被引:18,自引:0,他引:18  
Muñiz M  Morsomme P  Riezman H 《Cell》2001,104(2):313-320
It is currently thought that all secretory proteins travel together to the Golgi apparatus where they are sorted to different destinations. However, the specific requirements for transport of GPI-anchored proteins from the endoplasmic reticulum to the Golgi apparatus in yeast could be explained if protein sorting occurs earlier in the pathway. Using an in vitro assay that reconstitutes a single round of budding from the endoplasmic reticulum, we found that GPI-anchored proteins and other secretory proteins exit the endoplasmic reticulum in distinct vesicles. Therefore, GPI-anchored proteins are sorted from other proteins, in particular other plasma membrane proteins, at an early stage of the secretory pathway. These results have wide implications for the mechanism of protein exit from the endoplasmic reticulum.  相似文献   

14.
The pathways that deliver newly synthesized proteins that reside in lysosomes are well understood on comparison with our knowledge of how integral membrane proteins are sorted and delivered to the lysosome for degradation. Many membrane proteins are sorted to lysosomes following ubiquitination, which provides a sorting signal that can operate for sorting at the TGN (trans-Golgi network), at the plasma membrane or at the endosome for delivery into lumenal vesicles. Candidate multicomponent machines that can potentially move ubiquitinated integral membrane cargo proteins have been identified, but much work is still required to ascertain which of these candidates directly recognize ubiquitinated cargo and what they do with cargo after recognition. In the case of the machinery required for sorting into the lumenal vesicles of endosomes, other functions have also been determined including a link between sorting and movement of endosomes along microtubules.  相似文献   

15.
Proteins synthesized on membrane-bound ribosomes are sorted at the Golgi apparatus level for delivery to various cellular destinations: the plasma membrane or the extracellular space, and the lytic vacuole or lysosome. Sorting involves the assembly of vesicles, which preferentially package soluble proteins with a common destination. The selection of proteins for a particular vesicle type involves the recognition of proteins by specific receptors, such as the vacuolar sorting receptors for vacuolar targeting. Most eukaryotic organisms have one or two receptors to target proteins to the lytic vacuole. Surprisingly, plants have several members of the same family, seven in Arabidopsis thaliana. Why do plants have so many proteins to sort soluble proteins to their respective destinations? The presence of at least two types of vacuoles, lytic and storage, seems to be a partial answer. In this review we analyze the last experimental evidence supporting the presence of different subfamilies of plant vacuolar sorting receptors.  相似文献   

16.
17.
Virus Maturation by Budding   总被引:25,自引:0,他引:25       下载免费PDF全文
Enveloped viruses mature by budding at cellular membranes. It has been generally thought that this process is driven by interactions between the viral transmembrane proteins and the internal virion components (core, capsid, or nucleocapsid). This model was particularly applicable to alphaviruses, which require both spike proteins and a nucleocapsid for budding. However, genetic studies have clearly shown that the retrovirus core protein, i.e., the Gag protein, is able to form enveloped particles by itself. Also, budding of negative-strand RNA viruses (rhabdoviruses, orthomyxoviruses, and paramyxoviruses) seems to be accomplished mainly by internal components, most probably the matrix protein, since the spike proteins are not absolutely required for budding of these viruses either. In contrast, budding of coronavirus particles can occur in the absence of the nucleocapsid and appears to require two membrane proteins only. Biochemical and structural data suggest that the proteins, which play a key role in budding, drive this process by forming a three-dimensional (cage-like) protein lattice at the surface of or within the membrane. Similarly, recent electron microscopic studies revealed that the alphavirus spike proteins are also engaged in extensive lateral interactions, forming a dense protein shell at the outer surface of the viral envelope. On the basis of these data, we propose that the budding of enveloped viruses in general is governed by lateral interactions between peripheral or integral membrane proteins. This new concept also provides answers to the question of how viral and cellular membrane proteins are sorted during budding. In addition, it has implications for the mechanism by which the virion is uncoated during virus entry.  相似文献   

18.
Endocytic trafficking controls the density of molecules at the plasma membrane and by doing so, the cell surface profile, which in turn determines how cells interact with their environment. A full apprehension of any cellular process necessitates understanding how proteins associated with the plasma membrane are endocytosed, how they are sorted after internalization, and if and how they are recycled to the plasma membrane. To date, it is still difficult to experimentally gain access to this information, even more to do it in a quantitative way. Here we present a toolset based on photoactivation of fluorescent proteins that enabled us to generate quantitative information on endocytosis, incorporation into sorting and recycling endosomes, delivery from endosomes to the plasma membrane, and on the type of vesicles performing intracellular transport. We illustrate these approaches by revealing striking differences in the endocytic trafficking of T-cell receptor and CD4, which bind to the same molecule at the surface of antigen-presenting cells during T-cell activation.  相似文献   

19.
It is now widely recognized that gene expression and cellular processes include a probabilistic component. However, this does not essentially modify the theory of genetic programming. This stochastic aspect, which is called noise, is usually conceived as a margin of fluctuation in the way the genetic program functions and the latter remains understood as a specific mechanism guided by genetic information. In contrast, recent data show that proteins do not possess a high level of specificity. They can interact with numerous molecular partners. As a consequence molecular interactions are not simply “noisy”. Because they are subject to large combinatorial interaction possibilities, they are also intrinsically stochastic and must be sorted out by the cell structure. This contradicts the genetic programming theory which is based on the idea that protein interactions are directed by their stereospecificity and genetic information. Taking into account the lack of protein specificity leads to a new theory. Natural selection acts not only in evolution but also in ontogenesis by sorting stochastic molecular interactions. In this frame, the making up of an organism, instead of being a simple bottom-top process in which information flows from genes to phenotypes, is both a bottom-top and top-bottom process. Genes provide proteins, but their stochastic interactions are sorted by selective constraints arising from the cell and multi-cellular structures, which are themselves subject to the action of natural selection.  相似文献   

20.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号