首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial ATP-binding cassette transport systems for high-affinity uptake of zinc and manganese use a cluster 9 solute-binding protein. Structures of four cluster 9 transport proteins have been determined previously. However, the structural determinants for discrimination between zinc and manganese remain under discussion. To further investigate the variability of metal binding sites in bacterial transporters, we have determined the structure of the zinc-bound transport protein ZnuA from Escherichia coli to 1.75 A resolution. The overall structure of ZnuA is similar to other solute-binding transporters. A scaffolding alpha-helix forms the backbone for two structurally related globular domains. The metal-binding site is located at the domain interface. The bound zinc ion is coordinated by three histidine residues (His78, His161 and His225) and one glutamate residue (Glu77). The functional role of Glu77 for metal binding is unexpected, because this residue is not conserved in previously determined structures of zinc and manganese-specific transport proteins. The observed metal coordination by four protein residues differs significantly from the zinc-binding site in the ZnuA transporter from Synechocystis 6803, which binds zinc via three histidine residues. In addition, the E. coli ZnuA structure reveals the presence of a disulfide bond in the C-terminal globular domain that is not present in previously determined cluster 9 transport protein structures.  相似文献   

2.
3.
4.
Yeast Cox4 is a zinc binding subunit of cytochrome c oxidase. Cox4 is the only cofactor-containing subunit that is not directly part of the catalytic core of the enzyme located in the mitochondrial inner membrane. The Zn(II) site is shown to be distinct from the bovine ortholog, as it results from the x-ray structure of the entire cytochrome c oxidase in having a single histidyl residue and three conserved cysteines residues in the coordination sphere. Substitutions at the Cys ligand positions result in non-functional Cox4 proteins that fail to lead to cytochrome oxidase assembly. Limited function exists in His-119 mutants when overexpressed. Zn(II) binding in Cox4 is, therefore, important for the stability of the complex. The solution structure of yeast Cox4 elucidated by multidimensional NMR reveals a C-terminal globular domain consisting of two beta sheets analogous to the bovine ortholog except the loop containing the coordinating His in the yeast protein and the fourth Cys in the bovine protein are in different positions in the two structures. The conformation of this loop is dictated by the different sequence position of the fourth coordinating zinc ligand. The Zn(II) ion is buried within the domain, consistent with its role in structural stability. Potential functions of this matrix-facing subunit are discussed.  相似文献   

5.
6.
Solution structure of a zinc finger domain of yeast ADR1   总被引:14,自引:0,他引:14  
  相似文献   

7.
8.
Ubiquitin-specific protease 8 (USP8) hydrolyzes mono and polyubiquitylated targets such as epidermal growth factor receptors and is involved in clathrin-mediated internalization. In 1182 residues, USP8 contains multiple domains, including coiled-coil, rhodanese, and catalytic domains. We report the first high-resolution crystal structures of these domains and discuss their implications for USP8 function. The amino-terminal domain is a homodimer with a novel fold. It is composed of two five-helix bundles, where the first helices are swapped, and carboxyl-terminal helices are extended in an antiparallel fashion. The structure of the rhodanese domain, determined in complex with the E3 ligase NRDP1, reveals the canonical rhodanese fold but with a distorted primordial active site. The USP8 recognition domain of NRDP1 has a novel protein fold that interacts with a conserved peptide loop of the rhodanese domain. A consensus sequence of this loop is found in other NRDP1 targets, suggesting a common mode of interaction. The structure of the carboxyl-terminal catalytic domain of USP8 exhibits the conserved tripartite architecture but shows unique traits. Notably, the active site, including the ubiquitin binding pocket, is in a closed conformation, incompatible with substrate binding. The presence of a zinc ribbon subdomain near the ubiquitin binding site further suggests a polyubiquitin-specific binding site and a mechanism for substrate induced conformational changes.  相似文献   

9.
10.
The enzyme prephenate dehydrogenase catalyzes the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate for the biosynthesis of tyrosine. Prephenate dehydrogenases exist as either monofunctional or bifunctional enzymes. The bifunctional enzymes are diverse, since the prephenate dehydrogenase domain is associated with other enzymes, such as chorismate mutase and 3-phosphoskimate 1-carboxyvinyltransferase. We report the first crystal structure of a monofunctional prephenate dehydrogenase enzyme from the hyper-thermophile Aquifex aeolicus in complex with NAD+. This protein consists of two structural domains, a modified nucleotide-binding domain and a novel helical prephenate binding domain. The active site of prephenate dehydrogenase is formed at the domain interface and is shared between the subunits of the dimer. We infer from the structure that access to the active site is regulated via a gated mechanism, which is modulated by an ionic network involving a conserved arginine, Arg250. In addition, the crystal structure reveals for the first time the positions of a number of key catalytic residues and the identity of other active site residues that may participate in the reaction mechanism; these residues include Ser126 and Lys246 and the catalytic histidine, His147. Analysis of the structure further reveals that two secondary structure elements, beta3 and beta7, are missing in the prephenate dehydrogenase domain of the bifunctional chorismate mutase-prephenate dehydrogenase enzymes. This observation suggests that the two functional domains of chorismate mutase-prephenate dehydrogenase are interdependent and explains why these domains cannot be separated.  相似文献   

11.
BACKGROUND: The bifunctional enzyme formiminotransferase-cyclodeaminase (FTCD) contains two active sites at different positions on the protein structure. The enzyme binds a gamma-linked polyglutamylated form of the tetrahydrofolate substrate and channels the product of the transferase reaction from the transferase active site to the cyclodeaminase active site. Structural studies of this bifunctional enzyme and its monofunctional domains will provide insight into the mechanism of substrate channeling and the two catalytic reactions. RESULTS: The crystal structure of the formiminotransferase (FT) domain of FTCD has been determined in the presence of a product analog, folinic acid. The overall structure shows that the FT domain comprises two subdomains that adopt a novel alpha/beta fold. Inspection of the folinic acid binding site reveals an electrostatic tunnel traversing the width of the molecule. The distribution of charged residues in the tunnel provides insight into the possible mode of substrate binding and channeling. The electron density reveals that the non-natural stereoisomer, (6R)-folinic acid, binds to the protein; this observation suggests a mechanism for product release. In addition, a single molecule of glycerol is bound to the enzyme and indicates a putative binding site for formiminoglutamate. CONCLUSIONS: The structure of the FT domain in the presence of folinic acid reveals a possible novel mechanism for substrate channeling. The position of the folinic acid and a bound glycerol molecule near to the sidechain of His82 suggests that this residue may act as the catalytic base required for the formiminotransferase mechanism.  相似文献   

12.
Retroviral nucleocapsid proteins (NCPs) are CCHC-type zinc finger proteins that mediate virion RNA binding activities associated with retrovirus assembly and genomic RNA encapsidation. Mason-Pfizer monkey virus (MPMV), a type D retrovirus, encodes a 96-amino acid nucleocapsid protein, which contains two Cys-X2-Cys-X4-His-X4-Cys (CCHC) zinc fingers connected by an unusually long 15-amino acid linker. Homonuclear, two-dimensional sensitivity-enhanced 15N-1H, three-dimensional 15N-1H, and triple resonance NMR spectroscopy have been used to determine the solution structure and residue-specific backbone dynamics of the structured core domain of MPMV NCP containing residues 21-80. Structure calculations and spectral density mapping of N-H bond vector mobility reveal that MPMV NCP 21-80 is best described as two independently folded, rotationally uncorrelated globular domains connected by a seven-residue flexible linker consisting of residues 42-48. The N-terminal CCHC zinc finger domain (residues 24-37) appears to adopt a fold like that described previously for HIV-1 NCP; however, residues within this domain and the immediately adjacent linker region (residues 38-41) are characterized by extensive conformational averaging on the micros-ms time scale at 25 degrees C. In contrast to other NCPs, residues 49-77, which includes the C-terminal CCHC zinc-finger (residues 53-66), comprise a well-folded globular domain with the Val49-Pro-Gly-Leu52 sequence and C-terminal tail residues 67-77 characterized by amide proton exchange properties and 15N R1, R2, and (1H-15N) NOE values indistinguishable to residues in the core C-terminal finger. Twelve refined structural models of MPMV NCP residues 49-80 (pairwise backbone RMSD of 0.77 A) reveal that the side chains of the conserved Pro50 and Trp62 are in van der Waals contact with one another. Residues 70-73 in the C-terminal tail adopt a reverse turn-like structure. Ile77 is involved in extensive van der Waals contact with the core finger domain, while the side chains of Ser68 and Asn75 appear to form hydrogen bonds that stabilize the overall fold of this domain. These residues outside of the core finger structure are conserved in D-type and related retroviral NCPs, e.g., MMTV NCP, suggesting that the structure of MPMV NCP may be representative of this subclass of retroviral NCPs.  相似文献   

13.
14.
Src homology 2 (SH2) domains are approximately 100 residue phosphotyrosyl peptide binding modules found in signalling proteins and are important targets for therapeutic intervention. The peptide binding site is evolutionarily well conserved, particularly at the two major binding pockets, pTyr and pTyr + 3. We present a computational analysis of diversity within the peptide binding region and discuss molecular recognition beyond the conventional binding motif, drawing attention to novel conserved ligand interaction sites which may be exploitable in ligand binding studies. The peptide binding site is defined by selecting crystal contacts and domains are clustered according to binding site residue similarity. Comparison with a classification based on experimental peptide screening reveals a high level of qualitative agreement, indicating that the method is able independently to generate functional information. A conservation scoring method reveals extensive patches of conservation in some groups not present across the whole family, challenging the notion that the domains recognise only a linear phosphopeptide sequence. Conservation difference maps determine group-dependent clusters of conserved residues that are not seen when considering a larger experimentally determined group. Many of these residues contact the peptide outside the pTyr to pTyr + 3 motif, challenging the conventional view that this motif is largely responsible for ligand recognition and discrimination.  相似文献   

15.
Four cDNA clones of tobacco that could code for polypeptides with two WRKY domains were isolated. Among four NtWRKYs and other WRKY family proteins, sequence similarity was basically limited to the two WRKY domains. Glutathione S-transferase fusion proteins with the C-terminal WRKY domain of four NtWRKYs bound specifically to the W-box (TTGACC), and the N-terminal WRKY domain showed weaker binding activity with the W-box compared to the C-terminal domain. The DNA-binding activity of the WRKY domain was abolished by o-phenanthroline and this inhibition was recovered specifically by Zn2+. Substitution of the conserved cysteine and histidine residues of the plant-specific C2H2-type zinc finger-like motif in the WRKY domain abolished the DNA binding. In addition, mutations in the invariable WRKYGQK sequence at the N-terminal side of the zinc finger-like motif also significantly reduced the DNA-binding activity, suggesting that these residues are required for proper folding of the DNA-binding zinc finger.  相似文献   

16.
The solution structure of the cysteine-rich (CR) domain of Escherichia coli DnaJ has been solved by NMR methods. The structure of a 79 residue CR domain construct shows a novel fold with an overall V-shaped extended beta-hairpin topology. The CR domain is characterized by four C-X-X-C-X-G-X-G sequence motifs that bind two zinc ions. Residues in these two zinc modules show strong similarities in the grouping of resonances in the (15)N-(1)H HSQC spectrum and display pseudo-symmetry of the motifs in the calculated structures. The conformation of the cysteine residues coordinated to the zinc ion resembles that of the rubredoxin-knuckle, but there are significant differences in hydrogen bonding patterns in the two motifs. Zinc (15)N-(1)H HSQC titrations indicate that the fold of the isolated DnaJ CR domain is zinc-dependent and that one zinc module folds before the other. The C-X-X-C-X-G-X-G sequence motif is highly conserved in CR domains from a wide variety of species. The three-dimensional structure of the E. coli CR domain indicates that this sequence conservation is likely to result in a conserved structural motif.  相似文献   

17.
KdpD/KdpE two‐component signaling system regulates expression of a high affinity potassium transporter responsible for potassium homeostasis. The C‐terminal module of KdpD consists of a GAF domain linked to a histidine kinase domain. Whereas certain GAF domains act as regulators by binding cyclic nucleotides, the role of the juxtamembrane GAF domain in KdpD is unknown. We report the high‐resolution crystal structure of KdpD GAF domain (KdpDG) consisting of five α‐helices, four β‐sheets and two large loops. KdpDG forms a symmetry‐related dimer, wherein parallelly arranged monomers contribute to a four‐helix bundle at the dimer‐interface, SAXS analysis of KdpD C‐terminal module reveals an elongated structure that is a dimer in solution. Substitution of conserved residues with various residues that disrupt the dimer interface produce a range of effects on gene expression demonstrating the importance of the interface in inactive to active transitions during signaling. Comparison of ligand binding site of the classic cyclic nucleotide‐binding GAF domains to KdpDG reveals structural differences arising from naturally occurring substitutions in primary sequence of KdpDG that modifies the canonical NKFDE sequence motif required for cyclic nucleotide binding. Together these results suggest a structural role for KdpDG in dimerization and transmission of signal to the kinase domain.  相似文献   

18.
19.
Delta-crystallin, the major soluble protein component of avian and reptilian eye lenses, is highly homologous to the urea cycle enzyme, argininosuccinate lyase (ASL). In duck lenses, there are two highly homologous delta crystallins, delta I and delta II, that are 94% identical in amino acid sequence. While delta II crystallin has been shown to exhibit ASL activity in vitro, delta I is enzymatically inactive. The X-ray structure of a His to Asn mutant of duck delta II crystallin (H162N) with bound argininosuccinate has been determined to 2.3 A resolution using the molecular replacement technique. The overall fold of the protein is similar to other members of the superfamily to which this protein belongs, with the active site located in a cleft formed by three different monomers in the tetramer. The active site of the H162N mutant structure reveals that the side chain of Glu 296 has a different orientation relative to the homologous residue in the H91N mutant structure [Abu-Abed et al. (1997) Biochemistry 36, 14012-14022]. This shift results in the loss of the hydrogen bond between His 162 and Glu 296 seen in the H91N and turkey delta I crystallin structures; this H-bond is believed to be crucial for the catalytic mechanism of ASL/delta II crystallin. Argininosuccinate was found to be bound to residues in each of the three monomers that form the active site. The fumarate moiety is oriented toward active site residues His 162 and Glu 296 and other residues that are part of two of the three highly conserved regions of amino acid sequence in the superfamily, while the arginine moiety of the substrate is oriented toward residues which belong to either domain 1 or domain 2. The analysis of the structure reveals that significant conformational changes occur on substrate binding. The comparison of this structure with the inactive turkey delta I crystallin reveals that the conformation of domain 1 is crucial for substrate affinity and that the delta I protein is almost certainly inactive because it can no longer bind the substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号