首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mhlanga MM  Tyagi S 《Nature protocols》2006,1(3):1392-1398
Imaging products of gene expression in live cells will provide unique insights into the biology of cells. Molecular beacons make attractive probes for imaging mRNA in live cells as they can report the presence of an RNA target by turning on the fluorescence of a quenched fluorophore. However, when oligonucleotide probes are introduced into cells, they are rapidly sequestered in the nucleus, making the detection of cytoplasmic mRNAs difficult. We have shown that if a molecular beacon is linked to a tRNA, it stays in the cytoplasm and permits detection of cytoplasmic mRNAs. Here we describe two methods of linking molecular beacons to tRNA and show how the joint molecules can be used for imaging an mRNA that is normally present in the cytoplasm in live cultured cells. This protocol should take a total of 4 d to complete.  相似文献   

2.
3.
tRNAs in yeast and vertebrate cells move bidirectionally and reversibly between the nucleus and the cytoplasm. We investigated roles of members of the β-importin family in tRNA subcellular dynamics. Retrograde import of tRNA into the nucleus is dependent, directly or indirectly, upon Mtr10. tRNA nuclear export utilizes at least two members of the β-importin family. The β-importins involved in nuclear export have shared and exclusive functions. Los1 functions in both the tRNA primary export and the tRNA reexport processes. Msn5 is unable to export tRNAs in the primary round of export if the tRNAs are encoded by intron-containing genes, and for these tRNAs Msn5 functions primarily in their reexport to the cytoplasm. The data support a model in which tRNA retrograde import to the nucleus is a constitutive process; in contrast, reexport of the imported tRNAs back to the cytoplasm is regulated by the availability of nutrients to cells and by tRNA aminoacylation in the nucleus. Finally, we implicate Tef1, the yeast orthologue of translation elongation factor eEF1A, in the tRNA reexport process and show that its subcellular distribution between the nucleus and cytoplasm is dependent upon Mtr10 and Msn5.  相似文献   

4.
The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA(Met) (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA(Met) was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.  相似文献   

5.
6.
7.
8.
D A Melton  R Cortese 《Cell》1979,18(4):1165-1172
  相似文献   

9.
Englert M  Latz A  Becker D  Gimple O  Beier H  Akama K 《Biochimie》2007,89(11):1351-1365
Splicing of precursor tRNAs in plants requires the concerted action of three enzymes: an endonuclease to cleave the intron at the two splice sites, an RNA ligase for joining the resulting tRNA halves and a 2'-phosphotransferase to remove the 2'-phosphate from the splice junction. Pre-tRNA splicing has been demonstrated to occur exclusively in the nucleus of vertebrates and in the cytoplasm of budding yeast cells, respectively. We have investigated the subcellular localization of plant splicing enzymes fused to GFP by their transient expression in Allium epidermal and Vicia guard cells. Our results show that all three classes of splicing enzymes derived from Arabidopsis and Oryza are localized in the nucleus, suggesting that plant pre-tRNA splicing takes place preferentially in the nucleus. Moreover, two of the splicing enzymes, i.e., tRNA ligase and 2'-phosphotransferase, contain chloroplast transit signals at their N-termini and are predominantly targeted to chloroplasts and proplastids, respectively. The putative transit sequences are effective also in the heterologous context fused directly to GFP. Chloroplast genomes do not encode intron-containing tRNA genes of the nuclear type and consequently tRNA ligase and 2'-phosphotransferase are not required for classical pre-tRNA splicing in these organelles but they may play a role in tRNA repair and/or splicing of atypical group II introns. Additionally, 2'-phosphotransferase-GFP fusion protein has been found to be associated with mitochondria, as confirmed by colocalization studies with MitoTracker Red. In vivo analyses with mutated constructs suggest that alternative initiation of translation is one way utilized by tRNA splicing enzymes for differential targeting.  相似文献   

10.
Intracellular trafficking of tRNA was long thought to be a one-way trip from the site of biogenesis in the nucleus to the translation machinery in the cytoplasm. This view has recently been challenged, however, by the discovery that tRNA can move retrograde from the cytoplasm back to the nucleus in Saccharomyces cerevisiae and rat hepatoma H4IIE cells during nutrient stress and in S. cerevisiae after intron-containing pre-tRNAs are spliced in the cytoplasm. Contrary to studies reported, we present data suggesting that nutrient stress does not cause retrograde transport of cytoplasmic tRNAs to the nucleus in rat hepatoma H4IIE cells, human HeLa and HEK293 cells, and the yeasts Kluyveromyces lactis and S. cerevisiae. However, the efficiency of nuclear re-export of retrograded spliced tRNA was severely affected in S. cerevisiae and two other Saccharomyces species deprived of nutrient. Collectively, the data suggest that nutrient stress does not cause nuclear import of cytoplasmic tRNA; instead, nutrient stress specifically regulates nuclear re-export of retrograded spliced tRNAs but not nuclear export of tRNAs made from intronless pre-tRNAs in Saccharomyces species. Furthermore, we provide evidence suggesting that Mtr10p and the Gsp1pGTP/Gsp1pGDP cycle are not involved in nuclear tRNA import in S. cerevisiae during nutrient stress.  相似文献   

11.
The mitochondrial genome of Trypanosoma brucei does not appear to encode any tRNA genes. Isolated organellar tRNAs hybridize to nuclear DNA, suggesting that they are synthesized in the nucleus and subsequently imported into the mitochondrion. Most imported tRNAs have cytosolic counterparts, showing identical mobility on two-dimensional polyacrylamide gels. We have compared three nuclear-encoded mitochondrial tRNAs (tRNA(Lys), tRNA(Leu), tRNA(Tyr)) with their cytosolic isoforms by direct enzymatic sequence analysis. Our findings indicate that the primary sequences of the mitochondrial and the corresponding cytosolic tRNAs are identical. However, we have identified a mitochondrion-specific nucleotide modification of each tRNA which is localized to a conserved cytidine residue at the penultimate position 5' of the anticodon. The modification present in mature mitochondrial tRNA(Tyr) was not found in a mutant tRNA(Tyr) defective in splicing in either cytosolic or mitochondrial fractions. The mutant tRNA(Tyr) has been expressed in transformed cells and its import into mitochondria has been demonstrated, suggesting that the modified cytidine residue is not required for import and therefore may be involved in adapting imported tRNAs to specific requirements of the mitochondrial translation machinery.  相似文献   

12.
The HIV/AIDS pandemic is a major global health threat and understanding the detailed molecular mechanisms of HIV replication is critical for the development of novel therapeutics. To replicate, HIV-1 must access the nucleus of infected cells and integrate into host chromosomes, however little is known about the events occurring post-nuclear entry but before integration. Here we show that the karyopherin Transportin 3 (Tnp3) promotes HIV-1 integration in different cell types. Furthermore Tnp3 binds the viral capsid proteins and tRNAs incorporated into viral particles. Interaction between Tnp3, capsid and tRNAs is stronger in the presence of RanGTP, consistent with the possibility that Tnp3 is an export factor for these substrates. In agreement with this interpretation, we found that Tnp3 exports from the nuclei viral tRNAs in a RanGTP-dependent way. Tnp3 also binds and exports from the nuclei some species of cellular tRNAs with a defective 3'CCA end. Depletion of Tnp3 results in a re-distribution of HIV-1 capsid proteins between nucleus and cytoplasm however HIV-1 bearing the N74D mutation in capsid, which is insensitive to Tnp3 depletion, does not show nucleocytoplasmic redistribution of capsid proteins. We propose that Tnp3 promotes HIV-1 infection by displacing any capsid and tRNA that remain bound to the pre-integration complex after nuclear entry to facilitate integration. The results also provide evidence for a novel tRNA nucleocytoplasmic trafficking pathway in human cells.  相似文献   

13.
The importin-β family members (karyopherins) mediate the majority of nucleocytoplasmic transport. Msn5 and Los1, members of the importin-β family, function in tRNA nuclear export. tRNAs move bidirectionally between the nucleus and the cytoplasm. Nuclear tRNA accumulation occurs upon amino acid (aa) or glucose deprivation. To understand the mechanisms regulating tRNA subcellular trafficking, we investigated whether Msn5 and Los1 are regulated in response to nutrient availability. We provide evidence that tRNA subcellular trafficking is regulated by distinct aa-sensitive and glucose-sensitive mechanisms. Subcellular distributions of Msn5 and Los1 are altered upon glucose deprivation but not aa deprivation. Redistribution of tRNA exportins from the nucleus to the cytoplasm likely provides one mechanism for tRNA nuclear distribution upon glucose deprivation. We extended our studies to other members of the importin-β family and found that all tested karyopherins invert their subcellular distributions upon glucose deprivation but not aa deprivation. Glucose availability regulates the subcellular distributions of karyopherins likely due to alteration of the RanGTP gradient since glucose deprivation causes redistribution of Ran. Thus nuclear–cytoplasmic distribution of macromolecules is likely generally altered upon glucose deprivation due to collapse of the RanGTP gradient and redistribution of karyopherins between the nucleus and the cytoplasm.  相似文献   

14.
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells.  相似文献   

15.
16.
17.
Transfer RNAs (tRNAs) hold a central place in protein synthesis by interpreting the genetic information stored in DNA into the amino acid sequence of protein, thus functioning as “adaptor” molecules. In recent years, however, various studies have shown that tRNAs have additional functions beyond participating in protein synthesis. When suffering from certain nutritional stresses, tRNAs change the level of aminoacylation to became uncharged, and these uncharged tRNAs act as effector molecules to regulate global gene expression, so that the stressed organism copes with the adverse environmental stresses. In budding yeast and certain mammalian cells, the retrograde movement of mature tRNAs from cytoplasm to nucleus serves as a mechanism for the surveillance system within the nucleus to continue monitoring the integrity of tRNAs. On the other hand, this retrograde action effectively reduces the global protein synthesis level under conditions of nutritional starvation. Quite recently, various publications have shown that tRNAs are not stable molecules in an absolute sense. Under certain physiological or environmental stresses, they are specifically cleaved into fragments of different lengths in the anticodon loop or anticodon left arm. These cleavages are not a meaningless random degradation phenomenon. Instead, a novel class of signal molecules such as tRNA halves or sitRNAs may be produced, which are closely correlated with the modulation of global gene expression. Investigation of the regulatory functions of tRNAs is a frontier, which seeks to reveal the structural and functional diversity of tRNAs as well as their vital functions during the expression of genetic information. Supported by National Natural Science Foundation of China (Grant Nos. 30870530 and 30570398) and the National Key Basic Research Program of China (Grant No. 2005CB724600)  相似文献   

18.
19.
In higher plants, one-third to one-half of the mitochondrial tRNAs are encoded in the nucleus and are imported into mitochondria. This process appears to be highly specific for some tRNAs, but the factors that interact with tRNAs before and/or during import, as well as the signals present on the tRNAs, still need to be identified. The rare experiments performed so far suggest that, besides the probable implication of aminoacyl-tRNA synthetases, at least one additional import factor and/or structural features shared by imported tRNAs must be involved in plant mitochondrial tRNA import. To look for determinants that direct tRNA import into higher plant mitochondria, we have transformed BY2 tobacco cells with Arabidopsis thaliana cytosolic tRNA(Val)(AAC) carrying various mutations. The nucleotide replacements introduced in this naturally imported tRNA correspond to the anticodon and/or D-domain of the non-imported cytosolic tRNA(Met-e). Unlike the wild-type tRNA(Val)(AAC), a mutant tRNA(Val) carrying a methionine CAU anticodon that switches the aminoacylation of this tRNA from valine to methionine is not present in the mitochondrial fraction. Furthermore, mutant tRNAs(Val) carrying the D-domain of the tRNA(Met-e), although still efficiently recognized by the valyl-tRNA synthetase, are not imported any more into mitochondria. These data demonstrate that in plants, besides identity elements required for the recognition by the cognate aminoacyl-tRNA synthetase, tRNA molecules contain other determinants that are essential for mitochondrial import selectivity. Indeed, this suggests that the tRNA import mechanism occurring in plant mitochondria may be different from what has been described so far in yeast or in protozoa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号